ترغب بنشر مسار تعليمي؟ اضغط هنا

Kepler and the Long Period Variables

121   0   0.0 ( 0 )
 نشر من قبل Thomas Lebzelter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High precision Kepler photometry is used to explore the details of AGB light curves. Since AGB variability has a typical time scale on order of a year we discuss at length the removal of long term trends and quarterly changes in Kepler data. Photometry for a small sample of nine SR AGB stars are examined using a 30 minute cadence over a period of 45 months. While undergoing long period variations of many magnitudes, the light curves are shown to be smooth at the millimagnitude level over much shorter time intervals. No flares or other rapid events were detected on the sub-day time scale. The shortest AGB period detected is on the order of 100 days. All the SR variables in our sample are shown to have multiple modes. This is always the first overtone typically combined with the fundamental. A second common characteristic of SR variables is shown to be the simultaneous excitation of multiple closely separated periods for the same overtone mode. Approximately half the sample had a much longer variation in the light curve, likely a long secondary period. The light curves were all well represented by a combination of sinusoids. However, the properties of the sinusoids are time variable with irregular variations present at low level. No non-radial pulsations were detected. It is argued that the long secondary period variation seen in many SR variables is intrinsic to the star and linked to multiple mode pulsation.

قيم البحث

اقرأ أيضاً

The second Gaia data release (DR2, spring 2018) included a unique all-sky catalogue of large-amplitude long-period variables (LPVs) containing Miras and semi-regular variables. These stars are on the Asymptotic Giant Branch (AGB), and are characteriz ed by high luminosity, changing surface composition, and intense mass loss, that make them of paramount importance for stellar, galactic, and extra-galactic studies. An initial investigation of LPVs in the Large Magellanic Cloud (LMC) from the DR2 catalog of LPVs has revealed the possibility to disentangle O-rich and C-rich stars using a combination of optical Gaia and infrared 2MASS photometry. The so-called Gaia-2MASS diagram constructed to achieve this has further been shown to enable the identification of sub-groups of AGB stars among the O-rich and C-rich LPVs. Here, we extend this initial study of the Gaia-2MASS diagram to the Small Magellanic Cloud and the Galaxy, and use a variability amplitude proxy to identify LPVs from the full Gaia DR2 archive. We show that the remarkable properties found in the LMC also apply to these other stellar systems. Interesting features, moreover, emerge as a result of the different metallicities between the three stellar environments, which we highlight in this exploratory presentation of Gaias potential to study stellar populations harboring LPVs. Finally, we look ahead to the future, and highlight the power of the exploitation of Gaia RP spectra for the identification of carbon stars using solely Gaia data in forthcoming data releases, as revealed in an Image of the Week published by the Gaia consortium on the European Space Agencys web site. These proceedings include three animated images that can be used as outreach material.
191 - Michele Trabucchi 2017
Period-luminosity (PL) sequences of long period variables (LPVs) are commonly interpreted as different pulsation modes, but there is disagreement on the modal assignment. Here, we re-examine the observed PL sequences in the Large Magellanic Cloud, in cluding the sequence of long secondary periods (LSPs), and their associated pulsation modes. Firstly, we theoretically model the sequences using linear, radial, non-adiabatic pulsation models and a population synthesis model of the LMC red giants. Then, we use a semi-empirical approach to assign modes to the pulsation sequences by exploiting observed multi-mode pulsators. As a result of the combined approaches, we consistently find that sequences B and C$^{prime}$ both correspond to first overtone pulsation, although there are some fundamental mode pulsators at low luminosities on both sequences. The masses of these fundamental mode pulsators are larger at a given luminosity than the mass of the first overtone pulsators. These two sequences B and C$^{prime}$ are separated by a small period interval in which large amplitude pulsation in a long secondary period (sequence D variability) occurs, meaning that the first overtone pulsation is not seen as the primary mode of pulsation. Observationally, this leads to the splitting of the first overtone pulsation sequence into the two observed sequences B and C$^{prime}$. Our two independent examinations also show that sequences A$^{prime}$, A and C correspond to third overtone, second overtone and fundamental mode pulsation, respectively.
149 - V. R. Karambelkar 2019
We present a catalog of 417 luminous infrared variable stars with periods exceeding 250 days. These were identified in 20 nearby galaxies by the ongoing SPIRITS survey with the Spitzer Space Telescope. Of these, 359 variables have $M_{[4.5]}$ (phase- weighted mean magnitudes) fainter than $-12$ and periods and luminosities consistent with previously reported variables in the Large Magellanic Cloud. However, 58 variables are more luminous than $M_{[4.5]} = -12$, including 11 that are brighter than $M_{[4.5]} = -13$ with the brightest having $M_{[4.5]} = -15.51$. Most of these bright variable sources have quasi-periods longer than 1000 days, including four over 2000 days. We suggest that the fundamental period-luminosity relationship, previously measured for the Large Magellanic Cloud, extends to much higher luminosities and longer periods in this large galaxy sample. We posit that these variables include massive AGB stars (possibly super-AGB stars), red supergiants experiencing exceptionally high mass-loss rates, and interacting binaries. We also present 3.6, 4.5, 5.8 and 8.0 $mu$m photometric catalogs for all sources in these 20 galaxies.
We analyzed the Long Cadence photometry of 4 first overtone RR Lyr-type stars (RRc stars) observed by the KEPLER telescope. All studied variables are multiperiodic. The strongest secondary peak appears for f_2/f_1 = 1.58-1.63, or P_2/P_1 = 0.61-0.63. In each star we detect at least one subharmonic of f_2, either at ~1/2 f_2 or at ~3/2 f_2. The presence of subharmonics is a characteristic signature of a period doubling.
We report on the results of a long time photometric monitoring of the two metal poor Galactic globular clusters M22 and IC4499 searching for long period variables (LPVs) on the upper giant branch. We detected 22 new LPVs in the field of M22 and confi rmed the variability of six known variables. Periods could be determined for 16 of them. In the field of IC4499 we detected and characterized 2 new LPVs. Cluster membership is evaluated for all the variables based on photometry and literature data, and the location of the stars in logP-K-diagram is discussed. Our findings give further support to the presence of LPVs at metallicities as low as [Fe/H]=-1.7. The luminosity range where LPVs are found in metal poor clusters is lower than in more metal rich clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا