ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictive Uncertainty through Quantization

89   0   0.0 ( 0 )
 نشر من قبل Bastiaan Veeling
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

High-risk domains require reliable confidence estimates from predictive models. Deep latent variable models provide these, but suffer from the rigid variational distributions used for tractable inference, which err on the side of overconfidence. We propose Stochastic Quantized Activation Distributions (SQUAD), which imposes a flexible yet tractable distribution over discretized latent variables. The proposed method is scalable, self-normalizing and sample efficient. We demonstrate that the model fully utilizes the flexible distribution, learns interesting non-linearities, and provides predictive uncertainty of competitive quality.

قيم البحث

اقرأ أيضاً

While uncertainty estimation is a well-studied topic in deep learning, most such work focuses on marginal uncertainty estimates, i.e. the predictive mean and variance at individual input locations. But it is often more useful to estimate predictive c orrelations between the function values at different input locations. In this paper, we consider the problem of benchmarking how accurately Bayesian models can estimate predictive correlations. We first consider a downstream task which depends on posterior predictive correlations: transductive active learning (TAL). We find that TAL makes better use of models uncertainty estimates than ordinary active learning, and recommend this as a benchmark for evaluating Bayesian models. Since TAL is too expensive and indirect to guide development of algorithms, we introduce two metrics which more directly evaluate the predictive correlations and which can be computed efficiently: meta-correlations (i.e. the correlations between the models correlation estimates and the true values), and cross-normalized likelihoods (XLL). We validate these metrics by demonstrating their consistency with TAL performance and obtain insights about the relative performance of current Bayesian neural net and Gaussian process models.
Robustness issues arise in a variety of forms and are studied through multiple lenses in the machine learning literature. Neural networks lack adversarial robustness -- they are vulnerable to adversarial examples that through small perturbations to i nputs cause incorrect predictions. Further, trust is undermined when models give miscalibrated or unstable uncertainty estimates, i.e. the predicted probability is not a good indicator of how much we should trust our model and could vary greatly over multiple independent runs. In this paper, we study the connection between adversarial robustness, predictive uncertainty (calibration) and model uncertainty (stability) on multiple classification networks and datasets. We find that the inputs for which the model is sensitive to small perturbations (are easily attacked) are more likely to have poorly calibrated and unstable predictions. Based on this insight, we examine if calibration and stability can be improved by addressing those adversarially unrobust inputs. To this end, we propose Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLS) that integrates the correlations of adversarial robustness and uncertainty into training by adaptively softening labels conditioned on how easily it can be attacked by adversarial examples. We find that our method, taking the adversarial robustness of the in-distribution data into consideration, leads to better calibration and stability over the model even under distributional shifts. In addition, AR-AdaLS can also be applied to an ensemble model to achieve the best calibration performance.
238 - Zhijie Deng , Yucen Luo , Jun Zhu 2019
Bayesian neural networks (BNNs) augment deep networks with uncertainty quantification by Bayesian treatment of the network weights. However, such models face the challenge of Bayesian inference in a high-dimensional and usually over-parameterized spa ce. This paper investigates a new line of Bayesian deep learning by performing Bayesian inference on network structure. Instead of building structure from scratch inefficiently, we draw inspirations from neural architecture search to represent the network structure. We then develop an efficient stochastic variational inference approach which unifies the learning of both network structure and weights. Empirically, our method exhibits competitive predictive performance while preserving the benefits of Bayesian principles across challenging scenarios. We also provide convincing experimental justification for our modeling choice.
Predictive uncertainty estimation is an essential next step for the reliable deployment of deep object detectors in safety-critical tasks. In this work, we focus on estimating predictive distributions for bounding box regression output with variance networks. We show that in the context of object detection, training variance networks with negative log likelihood (NLL) can lead to high entropy predictive distributions regardless of the correctness of the output mean. We propose to use the energy score as a non-local proper scoring rule and find that when used for training, the energy score leads to better calibrated and lower entropy predictive distributions than NLL. We also address the widespread use of non-proper scoring metrics for evaluating predictive distributions from deep object detectors by proposing an alternate evaluation approach founded on proper scoring rules. Using the proposed evaluation tools, we show that although variance networks can be used to produce high quality predictive distributions, ad-hoc approaches used by seminal object detectors for choosing regression targets during training do not provide wide enough data support for reliable variance learning. We hope that our work helps shift evaluation in probabilistic object detection to better align with predictive uncertainty evaluation in other machine learning domains. Code for all models, evaluation, and datasets is available at: https://github.com/asharakeh/probdet.git.
As machine learning (ML) models are increasingly being employed to assist human decision makers, it becomes critical to provide these decision makers with relevant inputs which can help them decide if and how to incorporate model predictions into the ir decision making. For instance, communicating the uncertainty associated with model predictions could potentially be helpful in this regard. However, there is little to no research that systematically explores if and how conveying predictive uncertainty impacts decision making. In this work, we carry out user studies to systematically assess how people respond to different types of predictive uncertainty i.e., posterior predictive distributions with different shapes and variances, in the context of ML assisted decision making. To the best of our knowledge, this work marks one of the first attempts at studying this question. Our results demonstrate that people are more likely to agree with a model prediction when they observe the corresponding uncertainty associated with the prediction. This finding holds regardless of the properties (shape or variance) of predictive uncertainty (posterior predictive distribution), suggesting that uncertainty is an effective tool for persuading humans to agree with model predictions. Furthermore, we also find that other factors such as domain expertise and familiarity with ML also play a role in determining how someone interprets and incorporates predictive uncertainty into their decision making.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا