ﻻ يوجد ملخص باللغة العربية
We propose the following definition of topological quantum phases valid for mixed states: two states are in the same phase if there exists a time independent, fast and local Lindbladian evolution driving one state into the other. The underlying idea, motivated by Konig and Pastawski in 2013, is that it takes time to create new topological correlations, even with the use of dissipation. We show that it is a good definition in the following sense: (1) It divides the set of states into equivalent classes and it establishes a partial order between those according to their level of topological complexity. (2) It provides a path between any two states belonging to the same phase where observables behave smoothly. We then focus on pure states to relate the new definition in this particular case with the usual definition for quantum phases of closed systems in terms of the existence of a gapped path of Hamiltonians connecting both states in the corresponding ground state path. We show first that if two pure states are in the same phase in the Hamiltonian sense, they are also in the same phase in the Lindbladian sense considered here. We then turn to analyse the reverse implication, where we point out a very different behaviour in the case of symmetry protected topological (SPT) phases in 1D. Whereas at the Hamiltonian level, phases are known to be classified with the second cohomology group of the symmetry group, we show that symmetry cannot give any protection in 1D in the Lindbladian sense: there is only one SPT phase in 1D independently of the symmetry group. We finish analysing the case of 2D topological quantum systems. There we expect that different topological phases in the Hamiltonian sense remain different in the Lindbladian sense. We show this formally only for the $mathbb{Z}_n$ quantum double models.
We consider an open quantum system, with dissipation applied only to a part of its degrees of freedom, evolving via a quantum Markov dynamics. We demonstrate that, in the Zeno regime of large dissipation, the relaxation of the quantum system towards
Discrete combinatorial optimization consists in finding the optimal configuration that minimizes a given discrete objective function. An interpretation of such a function as the energy of a classical system allows us to reduce the optimization proble
We show that the time evolution of an open quantum system, described by a possibly time dependent Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation time and the size of the system. An immediat
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show
Using the algebraic Bethe ansatz, we derive a matrix product representation of the exact Bethe-ansatz states of the six-vertex Heisenberg chain (either XXX or XXZ and spin-$frac{1}{2}$) with open boundary conditions. In this representation, the compo