ترغب بنشر مسار تعليمي؟ اضغط هنا

Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO$_4$

83   0   0.0 ( 0 )
 نشر من قبل Yao Shen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO$_4$. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is hidden in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.

قيم البحث

اقرأ أيضاً

We propose quenched disorders could bring novel quantum excitations and models to certain quantum magnets. Motivated by the recent experiments on the quantum Ising magnet TmMgGaO$_4$, we explore the effects of the quenched disorder and the interlayer coupling in this triangular lattice Ising antiferromagnet. It is pointed out that the weak quenched (non-magnetic) disorder would convert the emergent 2D Berezinskii-Kosterlitz-Thouless (BKT) phase and the critical region into a gauge glass. There will be an emergent Halperin-Saslow mode associated with this gauge glass. Using the Imry-Ma argument, we further explain the fate of the finite-field $C_3$ symmetry breaking transition at the low temperatures. The ferromagnetic interlayer coupling would suppress the BKT phase and generate a tiny ferromagnetism. With the quenched disorders, this interlayer coupling changes the 2D gauge glass into a 3D gauge glass, and the Halperin-Saslow mode persists. This work merely focuses on addressing a phase regime in terms of emergent U(1) gauge glass behaviors and hope to inspire future works and thoughts in weakly disordered frustrated magnets in general.
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO 4 in longitudinal magnetic fields. Our experiments reveal a quasi-plateau state induced by quantum fluctuations. This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap. In the high field regime where the quantum fluctuations are largely suppressed, we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity. Through detailed semi-classical calculations, we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb$^{3+}$ crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO$_4$. Three CEF excitations from the ground-state Kramers do ublet are centered at the energies $hbar omega$ = 39, 61, and 97,meV in agreement with the effective mbox{spin-1/2} $g$-factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg$^{2+}$ and Ga$^{3+}$ giving rise to a distribution of Yb--O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 $g$-factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO$_4$, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.
Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO2, NaYbS2, and NaYbSe2, exhibit no long-range order down to the lowest measured temperatur es and therefore serve as putative candidates for the realization of a quantum spin liquid. However, their isostructural Ce-based counterpart KCeS2 exhibits magnetic order below TN = 400 mK, which was so far identified only in thermodynamic measurements. Here we reveal the magnetic structure of this long-range ordered phase using magnetic neutron diffraction. We show that it represents the so-called stripe-yz type of antiferromagnetic order with spins lying approximately in the triangular-lattice planes orthogonal to the nearest-neighbor Ce-Ce bonds. No structural lattice distortions are revealed below TN, indicating that the triangular lattice of Ce3+ ions remains geometrically perfect down to the lowest temperatures. We propose an effective Hamiltonian for KCeS2, based on a fit to the results of ab initio calculations, and demonstrate that its magnetic ground state matches the experimental spin structure.
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity . More crucially, from the ultralow-temperature a.c. susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion to hold also for its sister compound YbMgGaO$_4$, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا