ترغب بنشر مسار تعليمي؟ اضغط هنا

Google QUIC performance over a public SATCOM access

53   0   0.0 ( 0 )
 نشر من قبل Ludovic Thomas
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ludovic Thomas




اسأل ChatGPT حول البحث

Google QUIC accounts for almost 10% of the Internet traffic and the protocol is not standardized at the IETF yet. We distinguish Google QUIC (GQUIC) and IETF QUIC (IQUIC) since there may be differences between the two. Both Google and IE

قيم البحث

اقرأ أيضاً

In this paper, we present first measurements of Internet background radiation originating from the emerging transport protocol QUIC. Our analysis is based on the UCSD network telescope, correlated with active measurements. We find that research pro jects dominate the QUIC scanning ecosystem but also discover traffic from non-benign sources. We argue that although QUIC has been carefully designed to restrict reflective amplification attacks, the QUIC handshake is prone to resource exhaustion attacks, similar to TCP SYN floods. We confirm this conjecture by showing how this attack vector is already exploited in multi-vector attacks: On average, the Internet is exposed to four QUIC floods per hour and half of these attacks occur concurrently with other common attack types such as TCP/ICMP floods.
The terahertz (THz) band, 0.1-10 THz, has sufficient resources not only to satisfy the 5G requirements of 10 Gbit/s peak data rate but to enable a number of tempting rate-greedy applications. However, the THz band brings novel challenges, never addre ssed at lower frequencies. Among others, the scattering of THz waves from any object, including walls and furniture, and ultra-wideband highly-directional links lead to fundamentally new propagation and interference structures. In this article, we review the recent progress in THz propagation modeling, antenna and testbed designs, and propose a step-by-step roadmap for wireless THz Ethernet extension for indoor environments. As a side effect, the described concept provides a second life to the currently underutilized Ethernet infrastructure by using it as a universally available backbone. By applying real THz band propagation, reflection, and scattering measurements as well as ray-tracing simulations of a typical office, we analyze two representative scenarios at 300 GHz and 1.25 THz frequencies illustrating that extremely high rates can be achieved with realistic system parameters at room scales.
The use of unmanned aerial vehicle (UAV)-based communication in millimeter-wave (mmWave) frequencies to provide on-demand radio access is a promising approach to improve capacity and coverage in beyond-5G (B5G) systems. There are several design aspec ts to be addressed when optimizing for the deployment of such UAV base stations. As traffic demand of mobile users varies across time and space, dynamic algorithms that correspondingly adjust the UAV locations are essential to maximize performance. In addition to careful tracking of spatio-temporal user/traffic activity, such optimization needs to account for realistic backhaul constraints. In this work, we first review the latest 3GPP activities behind integrated access and backhaul system design, support for UAV base stations, and mmWave radio relaying functionality. We then compare static and mobile UAV-based communication options under practical assumptions on the mmWave system layout, mobility and clusterization of users, antenna array geometry, and dynamic backhauling. We demonstrate that leveraging the UAV mobility to serve moving users may improve the overall system performance even in the presence of backhaul capacity limitations.
With the proliferation of mobile computing devices, the demand for continuous network connectivity regardless of physical location has spurred interest in the use of mobile ad hoc networks. Since Transmission Control Protocol (TCP) is the standard ne twork protocol for communication in the internet, any wireless network with Internet service need to be compatible with TCP. TCP is tuned to perform well in traditional wired networks, where packet losses occur mostly because of congestion. However, TCP connections in Ad-hoc mobile networks are plagued by problems such as high bit error rates, frequent route changes, multipath routing and temporary network partitions. The throughput of TCP over such connection is not satisfactory, because TCP misinterprets the packet loss or delay as congestion and invokes congestion control and avoidance algorithm. In this research, the performance of TCP in Adhoc mobile network with high Bit Error rate (BER) and mobility is studied and investigated. Simulation model is implemented and experiments are performed using the Network Simulatior 2 (NS2).
Current network access infrastructures are characterized by heterogeneity, low latency, high throughput, and high computational capability, enabling massive concurrent connections and various services. Unfortunately, this design does not pay signific ant attention to mobile services in underserved areas. In this context, the use of aerial radio access networks (ARANs) is a promising strategy to complement existing terrestrial communication systems. Involving airborne components such as unmanned aerial vehicles, drones, and satellites, ARANs can quickly establish a flexible access infrastructure on demand. ARANs are expected to support the development of seamless mobile communication systems toward a comprehensive sixth-generation (6G) global access infrastructure. This paper provides an overview of recent studies regarding ARANs in the literature. First, we investigate related work to identify areas for further exploration in terms of recent knowledge advancements and analyses. Second, we define the scope and methodology of this study. Then, we describe ARAN architecture and its fundamental features for the development of 6G networks. In particular, we analyze the system model from several perspectives, including transmission propagation, energy consumption, communication latency, and network mobility. Furthermore, we introduce technologies that enable the success of ARAN implementations in terms of energy replenishment, operational management, and data delivery. Subsequently, we discuss application scenarios envisioned for these technologies. Finally, we highlight ongoing research efforts and trends toward 6G ARANs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا