ﻻ يوجد ملخص باللغة العربية
Entangled photon sources with simultaneously near-unity heralding efficiency and indistinguishability are the fundamental elements for scalable photonic quantum technologies. We design and realize a degenerate entangled-photon source from an ultrafast pulsed laser pumped spontaneous parametric down-conversion (SPDC), which show simultaneously ~97% heralding efficiency and ~96% indistinguishability between independent single photons. Such a high-efficiency and frequency-uncorrelated SPDC source allows generation of the first 12-photon genuine entanglement with a state fidelity of 0.572(24). We further demonstrate a blueprint of scalable scattershot boson sampling using 12 SPDC sources and a 12*12-modes interferometer for three-, four-, and five-boson sampling, which yields count rates more than four orders of magnitudes higher than all previous SPDC experiments. Our work immediately enables high-efficiency implementations of multiplexing, scattershot boson sampling, and heralded creation of remotely entangled photons, opening up a promising pathway to scalable photonic quantum technologies.
We study the quantum properties of the polarization of the light produced in type II spontaneous parametric down-conversion in the framework of a multi-mode model valid in any gain regime. We show that the the microscopic polarization entanglement of
Boson sampling is a well-defined task that is strongly believed to be intractable for classical computers, but can be efficiently solved by a specific quantum simulator. However, an outstanding problem for large-scale experimental boson sampling is t
An important step for photonic quantum technologies is the demonstration of a quantum advantage through boson sampling. In order to prevent classical simulability of boson sampling, the photons need to be almost perfectly identical and almost without
The frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric down conversion (SPDC) source, based on a
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i