ترغب بنشر مسار تعليمي؟ اضغط هنا

Down-conversion source of positively spectrally correlated and decorrelated photon pairs at telecom wavelength

232   0   0.0 ( 0 )
 نشر من قبل Thomas Lutz
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric down conversion (SPDC) source, based on a Beta-Barium Borate (BBO) crystal cut for type-II phase matching at 1550 nm which emits photons with the positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.



قيم البحث

اقرأ أيضاً

Sources of photon pairs based on the spontaneous parametric down conversion process are commonly used for long distance quantum communication. The key feature for improving the range of transmission is engineering their spectral properties. Following two experimental papers [Opt. Lett., 38, 697 (2013)] and [Opt. Lett., 39, 1481 (2014)] we analytically and numerically analyze the characteristics of a source. It is based on a $beta$-barium borate (BBO) crystal cut for type II phase matching at the degenerated frequencies 755 nm $rightarrow$ 1550 nm + 1550 nm. Our analysis shows a way for full control of spectral correlation within a fiber-coupled photon pair simultaneously with optimal brightness.
Heralded single photon source (HSPS) is an important way in generating genuine single photon, having advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off between the heralded single photon rate and the single photon purity. To overcome this, one can apply multiplexing technology in different degrees of freedom to enhance the performance of HSPS. Here, by employing spectral multiplexing and active feed-forward spectral manipulating, we demonstrate a HSPS at 1.5 {mu}m telecom-band. Our experimental results show that the spectral multiplexing effectively erases the frequency correlation of pair source and significantly improves the heralded single photon rate while keeping the g{^(^2^)}(0) as low as 0.0006{pm}0.0001. The Hong-Ou-Mandel interference between the heralded single photons and photons from an independent weak coherent source indicates a high indistinguishability. Our results pave a way for scalable HSPS by spectral multiplexing towards deterministic single photon emission.
We demonstrate an efficient generation of frequency anti-correlated entangled photon pairs at telecom wavelength. The fundamental laser is a continuous-wave high-power fiber laser at 1560 nm, through an extracavity frequency doubling system, a 780-nm pump with a power as high as 742 mW is realized. After single passing through a periodically poled KTiOPO4 (PPKTP) crystal, degenerate down-converted photon pairs are generated. With an overall detection efficiency of 14.8 %, the count rates of the single photons and coincidence of the photon pairs are measured to be 370 kHz and 22 kHz, respectively. The spectra of the signal and idler photons are centered at 1560.23 and 1560.04 nm, while their 3-dB bandwidths being 3.22 nm both. The joint spectrum of the photon pair is observed to be frequency anti correlated and have a spectral bandwidth of 0.52 nm. According to the ratio of the single photon spectral bandwidth to the joint spectral bandwidth of the photon pairs, the degree of frequency entanglement is quantified to be 6.19. Based on a Hong Ou Mandel interferometric coincidence measurement, a frequency indistinguishability of 95 % is demonstrated. The good agreements with the theoretical estimations show that the inherent extra intensity noise in fiber lasers has little influence on frequency entanglement of the generated photon pairs.
373 - Han-Sen Zhong , Yuan Li , Wei Li 2018
Entangled photon sources with simultaneously near-unity heralding efficiency and indistinguishability are the fundamental elements for scalable photonic quantum technologies. We design and realize a degenerate entangled-photon source from an ultrafas t pulsed laser pumped spontaneous parametric down-conversion (SPDC), which show simultaneously ~97% heralding efficiency and ~96% indistinguishability between independent single photons. Such a high-efficiency and frequency-uncorrelated SPDC source allows generation of the first 12-photon genuine entanglement with a state fidelity of 0.572(24). We further demonstrate a blueprint of scalable scattershot boson sampling using 12 SPDC sources and a 12*12-modes interferometer for three-, four-, and five-boson sampling, which yields count rates more than four orders of magnitudes higher than all previous SPDC experiments. Our work immediately enables high-efficiency implementations of multiplexing, scattershot boson sampling, and heralded creation of remotely entangled photons, opening up a promising pathway to scalable photonic quantum technologies.
The successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Po dolsky-Rosen (EPR) entanglement of photon pairs are a promising resource of such high-dimensional quantum correlations. Here, we experimentally certify EPR correlations of photon pairs generated by spontaneous parametric down-conversion (SPDC) in a nonlinear crystal with type-0 phase-matching at telecom wavelength for the first time. To experimentally observe EPR entanglement, we perform scanning measurements in the near- and far-field planes of the signal and idler modes. We certify EPR correlations with high statistical significance of up to 45 standard deviations. Furthermore, we determine the entanglement of formation of our source to be greater than one, which gives evidence for the the high-dimensional entanglement between the photons. Operating at telecom wavelengths around 1550 nm, our source is compatible with todays deployed telecommunication infrastructure, thus paving the way for integrating sources of high-dimensional entanglement into quantum-communication infrastructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا