ﻻ يوجد ملخص باللغة العربية
Ultrastable lasers serve as the backbone for some of the most advanced scientific experiments today and enable the ability to perform atomic spectroscopy and laser interferometry at the highest levels of precision possible. With the recent and increasing interest in applying these systems outside of the laboratory, it remains an open question as how to realize a laser source that can reach the extraordinary levels of narrow linewidth required and yet still remain sufficiently compact and portable for field use. Critical to the development of this ideal laser source is the necessity for the laser to be insensitive to both short- and long-term fluctuations in temperature, which ultimately broaden the laser linewidth and cause drift in the lasers center frequency. We show here that the use of a large mode-volume optical resonator, which acts to suppress the resonators fast thermal fluctuations, together with the stimulated Brillouin scattering (SBS) optical nonlinearity presents a powerful combination that enables the ability to lase with an ultra-narrow linewidth of 20 Hz. To address the lasers long-term temperature drift, we apply the narrow Brillouin line as a metrological tool that precisely senses a minute change in the resonators temperature at the level of 85 nK. The precision afforded by this temperature measurement enables new possibilities for the stabilization of resonators against environmental perturbation.
We report on two ultrastable lasers each stabilized to independent silicon Fabry-Perot cavities operated at 124 K. The fractional frequency instability of each laser is completely determined by the fundamental thermal Brownian noise of the mirror coa
Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent commun
We present the first demonstration of a narrow linewidth, waveguide-based Brillouin laser which is enabled by large Brillouin gain of a chalcogenide chip. The waveguides are equipped with vertical tapers for low loss coupling. Due to optical feedback
We demonstrate a hybrid integrated and widely tunable diode laser with an intrinsic linewidth as narrow as 40 Hz, achieved with a single roundtrip through a low-loss feedback circuit that extends the cavity length to 0.5 meter on a chip. Employing so
Optical frequency stabilization is a critical component for precision scientific systems including quantum sensing, precision metrology, and atomic timekeeping. Ultra-high quality factor photonic integrated optical resonators are a prime candidate fo