ﻻ يوجد ملخص باللغة العربية
We demonstrate a hybrid integrated and widely tunable diode laser with an intrinsic linewidth as narrow as 40 Hz, achieved with a single roundtrip through a low-loss feedback circuit that extends the cavity length to 0.5 meter on a chip. Employing solely dielectrics for single-roundtrip, single-mode resolved feedback filtering enables linewidth narrowing with increasing laser power, without limitations through nonlinear loss. We achieve single-frequency oscillation with up to 23 mW fiber coupled output power, 70-nm wide spectral coverage in the 1.55 $mu$m wavelength range with 3 mW output, and obtain more than 60 dB side mode suppression. Such properties and options for further linewidth narrowing render the approach of high interest for direct integration in photonic circuits serving microwave photonics, coherent communications, sensing and metrology with highest resolution.
Integrated single-mode microlasers with ultra-narrow linewidths play a game-changing role in a broad spectrum of applications ranging from coherent communication and LIDAR to metrology and sensing. Generation of such light sources in a controllable a
More and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is the
Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent commun
Photonic systems and technologies traditionally relegated to table-top experiments are poised to make the leap from the laboratory to real-world applications through integration. Stimulated Brillouin scattering (SBS) lasers, through their unique line
Portable mid-infrared (mid-IR) spectroscopy and sensing applications require widely tunable, narrow linewidth, chip-scale, single-mode sources without sacrificing significant output power. However, no such lasers have been demonstrated beyond 3 $mu$m