ﻻ يوجد ملخص باللغة العربية
We present a comprehensive stellar atmosphere analysis of 329 O- and B-type stars in the Small Magellanic Cloud (SMC) from the RIOTS4 survey. Using spectroscopically derived effective temperature (Teff) and surface gravities, we find that classical Be stars appear misplaced to low Teff and high luminosity in the spectroscopic Hertzsprung-Russell diagram (sHRD). Together with the most luminous stars in our sample, the stellar masses derived from the sHRD for these objects are systematically larger than those obtained from the conventional HRD. This suggests that the well-known, spectroscopic mass-discrepancy problem may be linked to the fact that both groups of stars have outer envelopes that are nearly gravitationally unbound. The non-emission-line stars in our sample mainly appear on the main-sequence, allowing a first estimate of the terminal-age main-sequence (TAMS) in the SMC, which matches the predicted TAMS between 12 and 40$,$M$_{odot}$ at SMC metallicity. We further find a large underabundance of stars above $sim 25,$M$_{odot}$ near the ZAMS, reminiscent of such earlier findings in the Milky Way and LMC.
The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, whi
As the opening review to the focus meeting ``Stellar Behemoths: Red Supergiants across the Local Universe, I here provide a brief introduction to red supergiants, setting the stage for subsequent contributions. I highlight some recent activity in the
We present the spectroscopic analysis of 333 OB-type stars extracted from VLT-MUSE observations of the central 30 x 30 pc of NGC 2070 in the Tarantula Nebula on the Large Magellanic Cloud, the majority of which are analysed for the the first time. Th
In this study we use a sample of about 9 million SkyMapper stars with metallicities to investigate the properties of the two stellar populations seen in the high-velocity ($V_{rm T} > 200$ km/s) Gaia DR2 Hertzsprung-Russell diagram. Based on 10,000 r
ZDI studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and prese