ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for the host galaxy of FRB171020

57   0   0.0 ( 0 )
 نشر من قبل Elizabeth Mahony
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a search for the host galaxy of FRB171020, the fast radio burst with the smallest recorded dispersion measure (DM $=114$ pc cm$^{-3}$) of our on-ongoing ASKAP survey. The low DM confines the burst location within a sufficiently small volume to rigorously constrain the identity of the host galaxy. We identify 16 candidate galaxies in the search volume and single out ESO 601-G036, a Sc galaxy at redshift $z=0.00867$, as the most likely host galaxy. UV and optical imaging and spectroscopy reveal this galaxy has a star-formation rate of approximately 0.1 M$_odot$ yr$^{-1}$ and oxygen abundance $12 + log({rm O/H}) = 8.3 pm 0.2$, properties remarkably consistent with the galaxy hosting the repeating FRB121102. However, in contrast to FRB121102, follow-up radio observations of ESO 601-G036 show no compact radio emission above a 5$sigma$ limit of $L_{2.1{rm GHz}}=3.6times 10^{19}$ W Hz$^{-1}$. Using radio continuum observations of the field, combined with archival optical imaging data, we find no analog to the persistent radio source associated with FRB121102 within the localization region of FRB171020 out to $z=0.06$. These results suggest that FRBs are not necessarily associated with a luminous and compact radio continuum source.



قيم البحث

اقرأ أيضاً

We present SMA and NOEMA observations of the host galaxy of FRB 121102 in the CO 3-2 and 1-0 transitions, respectively. We do not detect emission from either transition. We set $3sigma$ upper limits to the CO luminosity $L_{CO} < 2.5 times 10^7,{rm K ,km,s}^{-1} {, rm pc^{-2}}$ for CO 3-2 and $L_{CO} < 2.3 times 10^9, {rm K,km,s}^{-1} {, rm pc^{-2}}$ for CO 1-0. For Milky-Way-like star formation properties, we set a $3sigma$ upper limit on the $H_2$ mass of $2.5 times 10^8 rm M_{odot}$, slightly less than the predictions for the $H_2$ mass based on the star formation rate. The true constraint on the $H_2$ mass may be significantly higher, however, because of the reduction in CO luminosity that is common forlow-metallicity dwarf galaxies like the FRB host galaxy. These results demonstrate the challenge of identifying the nature of FRB progenitors through study of the host galaxy molecular gas. We also place a limit of 42 $mu$Jy ($3sigma$) on the continuum flux density of the persistent radio source at 97 GHz, consistent with a power-law extrapolation of the low frequency spectrum, which may arise from an AGN or other nonthermal source.
GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy ho st complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain optical spectra (3600-9000{AA}) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable sub-solar metallicities. We conclude that, in agreement with past spatially-resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star-formation rates and a broad range of stellar masses. In this paper, we positionally associate the recent unambiguously short-hard Swift GR B 100206A with a disk galaxy at redshift z=0.4068 that is rapidly forming stars at a rate of ~30 M_sun/yr, almost an order of magnitude higher than any previously identified short GRB host. Using photometry from Gemini, Keck, PAIRITEL, and WISE, we show that the galaxy is very red (g-K = 4.3 AB mag), heavily obscured (A_V ~ 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]_KD02 = 9.2): it is a classical luminous infrared galaxy (LIRG), with L_IR ~ 4 x 10^11 L_sun. While these properties could be interpreted to support an association of this GRB with very recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is present. The current specific star-formation rate is modest (specific SFR ~ 0.5 Gyr^-1), the current star-formation rate is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor, similar to what is inferred for other short-hard GRBs. Given the precedent established by previous short GRB hosts and the significant fraction of the Universes stellar mass in LIRG-like systems at z >~0.3, an older progenitor represents the most likely origin of this event.
The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star-formation rate, implicating a ubi quitously occurring progenitor object. FRBs localised with ~arcsecond accuracy also enable effective searches for associated multi-wavelength and multi-timescale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localisation of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z=0.098) and persistent radio source. The galaxy is massive ($sim3times10^{10} M_{odot}$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of $1.2times10^{29}$ erg s$^{-1}$ Hz$^{-1}$, and show that is extended on scales $gtrsim50$ mas. We associate this radio emission with the ongoing star-formation activity in SDSS J050803.48+260338.0. Deeper, more detailed observations are required to better utilise the milliarcsecond-scale localisation of FRB 20201124A reported from the European VLBI Network, and determine the origin of the large dispersion measure ($150-220$ pc cm$^{-3}$) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, but is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations.
A likely tidal disruption of a star by the intermediate-mass black hole (IMBH) of a dwarf galaxy was recently identified in association with Abell 1795. Without deep spectroscopy for this very faint object, however, the possibility of a more massive background galaxy or even a disk-instability flare from a weak AGN could not be dismissed. We have now obtained 8 hours of Gemini spectroscopy which unambiguously demonstrate that the host galaxy is indeed an extremely low-mass $(M_astsim 3times 10^8; {rm M}_{odot})$ galaxy in Abell 1795, comparable to the least-massive galaxies determined to host IMBHs via other studies. We find that the spectrum is consistent with the X-ray flare being due to a tidal disruption event rather than an AGN flare. We also set improved limits on the black hole mass $({rm log}[M_{bullet}/{rm M}_{odot}] sim 5.3 - 5.7)$ and infer a 15-year X-ray variability of a factor of $> 10^4$. The confirmation of this galaxy-black hole system provides a glimpse into a population of galaxies that is otherwise difficult to study, due to the galaxies low masses and intrinsic faintness, but which may be important contributors to the tidal disruption rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا