ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spatially Resolved Study of the GRB 020903 Host Galaxy

80   0   0.0 ( 0 )
 نشر من قبل Mallory Thorp
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain optical spectra (3600-9000{AA}) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable sub-solar metallicities. We conclude that, in agreement with past spatially-resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

قيم البحث

اقرأ أيضاً

The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star-formation rates and a broad range of stellar masses. In this paper, we positionally associate the recent unambiguously short-hard Swift GR B 100206A with a disk galaxy at redshift z=0.4068 that is rapidly forming stars at a rate of ~30 M_sun/yr, almost an order of magnitude higher than any previously identified short GRB host. Using photometry from Gemini, Keck, PAIRITEL, and WISE, we show that the galaxy is very red (g-K = 4.3 AB mag), heavily obscured (A_V ~ 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]_KD02 = 9.2): it is a classical luminous infrared galaxy (LIRG), with L_IR ~ 4 x 10^11 L_sun. While these properties could be interpreted to support an association of this GRB with very recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is present. The current specific star-formation rate is modest (specific SFR ~ 0.5 Gyr^-1), the current star-formation rate is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor, similar to what is inferred for other short-hard GRBs. Given the precedent established by previous short GRB hosts and the significant fraction of the Universes stellar mass in LIRG-like systems at z >~0.3, an older progenitor represents the most likely origin of this event.
Superluminous supernovae (SLSNe) are the most luminous supernovae in the universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendenc y to explode in very dense, UV-bright, and blue regions. In this paper we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF~11hrq and PTF~12dam. For both galaxies textit{Hubble Space Telescope} multi-filter images were obtained. Additionally, we performe integral field spectroscopy of the host galaxy of PTF~11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF~11hrq nor PTF~12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colors. The MUSE data reveal a bright starbursting region in the host of PTF~11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer color, stronger [OIII], and lower metallicity. The host galaxy is likely interacting with a companion. PTF~12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star-formation episodes triggered by interaction. High resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.
Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively hi gh stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.
96 - J. X. Prochaska 2009
We report on strong H2 and CO absorption from gas within the host galaxy of gamma-ray burst (GRB) 080607. Analysis of our Keck/LRIS afterglow spectrum reveals a very large HI column density (NHI = 10^22.70 cm^-2) and strong metal-line absorption at z _GRB = 3.0363 with a roughly solar metallicity. We detect a series of A-X bandheads from CO and estimate N(CO) = 10^16.5 cm^-2 and T_ex^CO > 100K. We argue that the high excitation temperature results from UV pumping of the CO gas by the GRB afterglow. Similarly, we observe H2 absorption via the Lyman-Werner bands and estimate N(H2) = 10^21.2 cm^-2 with T_ex^H2 = 10--300K. The afterglow photometry suggests an extinction law with R_V=4 and A_V=3.2 mag and requires the presence of a modest 2175A bump. Additionally, modeling of the Swift/XRT X-ray spectrum confirms a large column density with N(H) = 10^22.58 cm^-2. Remarkably, this molecular gas has extinction properties, metallicity, and a CO/H2 ratio comparable to those of translucent molecular clouds of the Milky Way, suggesting that star formation at high z proceeds in similar environments as today. However, the integrated dust-to-metals ratio is sub-Galactic, suggesting the dust is primarily associated with the molecular phase while the atomic gas has a much lower dust-to-gas ratio. Sightlines like GRB 080607 serve as powerful probes of nucleosynthesis and star-forming regions in the young universe and contribute to the population of dark GRB afterglows.
Magnetars are regarded as the most magnetized neutron stars in the Universe. Aiming to unveil what kinds of stars and supernovae can create magnetars, we have performed a state-of-the-art spatially resolved spectroscopic X-ray study of the supernova remnants (SNRs) Kes 73, RCW 103, and N49, which host magnetars 1E 1841-045, 1E 161348-5055, and SGR 0526-66, respectively. The three SNRs are O- and Ne-enhanced and are evolving in the interstellar medium with densities of >1--2 cm$^{-3}$. The metal composition and dense environment indicate that the progenitor stars are not very massive. The progenitor masses of the three magnetars are constrained to be < 20 Msun (11--15 Msun for Kes 73, < 13 Msun for RCW 103, and ~13 --17 Msun for N49). Our study suggests that magnetars are not necessarily made from very massive stars, but originate from stars that span a large mass range. The explosion energies of the three SNRs range from $10^{50}$ erg to ~2$times 10^{51}$ erg, further refuting that the SNRs are energized by rapidly rotating (millisecond) pulsars. We report that RCW 103 is produced by a weak supernova explosion with significant fallback, as such an explosion explains the low explosion energy (~$10^{50}$ erg), small observed metal masses ($M_{rm O}sim 4times 10^{-2}$ Msun and $M_{rm Ne}sim 6times 10^{-3}$ Msun), and sub-solar abundances of heavier elements such as Si and S. Our study supports the fossil field origin as an important channel to produce magnetars, given the normal mass range ($M_{rm ZAMS} < 20$ Msun) of the progenitor stars, the low-to-normal explosion energy of the SNRs, and the fact that the fraction of SNRs hosting magnetars is consistent with the magnetic OB stars with high fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا