ﻻ يوجد ملخص باللغة العربية
The observation of novel physical phenomena such as Hofstadters butterfly, topological currents and unconventional superconductivity in graphene have been enabled by the replacement of SiO$_2$ with hexagonal Boron Nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices. In this work we probe the strain configuration of graphene on hBN contacted with two types of metal contacts, two-dimensional (2D) top-contacts and one-dimensional (1D) edge-contacts. We show that top-contacts induce strain in the graphene layer along two opposing leads, leading to a complex strain pattern across the device channel. Edge-contacts, on the contrary, do not show such strain pattern. A finite-elements modelling simulation is used to confirm that the observed strain pattern is generated by the mechanical action of the metal contacts clamped to the graphene. Thermal annealing is shown to reduce the overall doping whilst increasing the overall strain, indicating and increased interaction between graphene and hBN. Surprisingly, we find that the two contacts configurations lead to different twist-angles in graphene/hBN superlattices, which converge to the same value after thermal annealing. This observation confirms the self-locking mechanism of graphene/hBN superlattices also in the presence of strain gradients. Our experiments may have profound implications in the development of future electronic devices based on heterostructures and provide a new mechanism to induce complex strain patterns in 2D materials.
Using a simple setup to bend a flexible substrate, we demonstrate deterministic and reproducible in-situ strain tuning of graphene electronic devices. Central to this method is the full hBN encapsulation of graphene, which preserves the exceptional q
Twist-engineering of the electronic structure of van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the
Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the e
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN subst
The moire superlattice induced in graphene by the hexagonal boron nitride substrate modifies strongly the bandstructure of graphene, which manifests itself by the appearance of new Dirac points, accompanied by van Hove singularities. In this work, we