ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain-engineering of twist-angle in graphene/hBN superlattice devices

118   0   0.0 ( 0 )
 نشر من قبل Adolfo De Sanctis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation of novel physical phenomena such as Hofstadters butterfly, topological currents and unconventional superconductivity in graphene have been enabled by the replacement of SiO$_2$ with hexagonal Boron Nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices. In this work we probe the strain configuration of graphene on hBN contacted with two types of metal contacts, two-dimensional (2D) top-contacts and one-dimensional (1D) edge-contacts. We show that top-contacts induce strain in the graphene layer along two opposing leads, leading to a complex strain pattern across the device channel. Edge-contacts, on the contrary, do not show such strain pattern. A finite-elements modelling simulation is used to confirm that the observed strain pattern is generated by the mechanical action of the metal contacts clamped to the graphene. Thermal annealing is shown to reduce the overall doping whilst increasing the overall strain, indicating and increased interaction between graphene and hBN. Surprisingly, we find that the two contacts configurations lead to different twist-angles in graphene/hBN superlattices, which converge to the same value after thermal annealing. This observation confirms the self-locking mechanism of graphene/hBN superlattices also in the presence of strain gradients. Our experiments may have profound implications in the development of future electronic devices based on heterostructures and provide a new mechanism to induce complex strain patterns in 2D materials.



قيم البحث

اقرأ أيضاً

Using a simple setup to bend a flexible substrate, we demonstrate deterministic and reproducible in-situ strain tuning of graphene electronic devices. Central to this method is the full hBN encapsulation of graphene, which preserves the exceptional q uality of pristine graphene for transport experiments. In addition, the on-substrate approach allows one to exploit strain effects in the full range of possible sample geometries and at the same time guarantees that changes in the gate capacitance remain negligible during the deformation process. We use Raman spectroscopy to spatially map the strain magnitude in devices with two different geometries and demonstrate the possibility to engineer a strain gradient, which is relevant for accessing the valley degree of freedom with pseudo-magnetic fields. Comparing the transport characteristics of a suspended device with those of an on-substrate device, we demonstrate that our new approach does not suffer from the ambiguities encountered in suspended devices.
Twist-engineering of the electronic structure of van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the center of the three-atom layer and are therefore not particularly susceptible to twisting. Here, we report that high-lying excitons in bilayer WSe2 can be tuned over 235 meV by twisting, with a twist-angle susceptibility of 8.1 meV/{deg}, an order of magnitude larger than that of the band-edge A-exciton. This tunability arises because the electronic states associated with upper conduction bands delocalize into the chalcogenide atoms. The effect gives control over excitonic quantum interference, revealed in selective activation and deactivation of electromagnetically induced transparency (EIT) in second-harmonic generation. Such a degree of freedom does not exist in conventional dilute atomic-gas systems, where EIT was originally established, and allows us to shape the frequency dependence, i.e. the dispersion, of the optical nonlinearity.
Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the e xact twist angle and its spatial homogeneity, there is a need for a fast and non-invasive characterization technique of the local twist angle, to be applied preferably right after stacking. We demonstrate that confocal Raman spectroscopy can be utilized to spatially map the twist angle in stacked bilayer graphene with an angle resolution of 0.01{deg} for angles between 6.5{deg} and 8{deg} when using a green excitation laser. The twist angles can directly be extracted from the moire superlattice-activated Raman scattering process of the transverse acoustic (TA) phonon mode. Furthermore, we show that the width of the TA Raman peak contains valuable information on spatial twist-angle variations on length scales below the laser spot size of ~ 500 nm.
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN subst rate. We find mobilities and spin-relaxation times comparable to that of SiO$_2$ substrate based graphene devices, and obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and DYakonov-Perel mechanisms. The behaviour of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin injection polarization of the high-resistance contacts can be modulated by DC bias from -0.3 V to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features mark a distinctive spin injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.
The moire superlattice induced in graphene by the hexagonal boron nitride substrate modifies strongly the bandstructure of graphene, which manifests itself by the appearance of new Dirac points, accompanied by van Hove singularities. In this work, we present supercurrent measurements in a Josephson junction made from such a graphene superlattice in the long and diffusive regime, where that the supercurrent depends on the Thouless energy. We can then estimate the specific density of states of the graphene superlattice from the combined measurement of the critical current and the normal state resistance. The result matches with theoretical predictions and highlights the strong increase of the density of states at the van Hove singularities. By measuring the magnetic field dependence of the supercurrent, we find the presence of edge currents at these singularities. We explain it by the reduction of the Fermi velocity associated with the flat band at the van Hove singularity, which suppresses the supercurrent in the bulk while the electrons at the edge remain less localized, resulting in an edge supercurrent. We attribute this different behavior of the edges to defects or chemical doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا