ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the Photochemical Ring-Opening of 1,3-Cyclohexadiene by Ultrafast Electron Diffraction

162   0   0.0 ( 0 )
 نشر من قبل Thomas Wolf
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Here, we present direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and sub-{AA}ngstrom length scale by megaelectronvolt ultrafast electron diffraction. We follow the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by direct measurement of time-dependent changes in the distribution of interatomic distances. We observe a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the sub-picosecond timescale. Our work demonstrates the potential of megaelectronvolt ultrafast electron diffraction to elucidate photochemical reaction paths in organic chemistry.



قيم البحث

اقرأ أيضاً

216 - Kasra Amini , Jens Biegert 2020
Knowledge of molecular structure is paramount in understanding, and ultimately influencing, chemical reactivity. For nearly a century, diffractive imaging has been used to identify the structures of many biologically-relevant gas-phase molecules with atomic (i.e. Angstrom, A; 1 A = 10$^{-10}$ m) spatial resolution. Unravelling the mechanisms of chemical reactions requires the capability to record multiple well-resolved snapshots of the molecular structure as it is evolving on the nuclear (i.e. femtosecond, fs; 1 fs = 10$^{-15}$ s) timescale. We present the latest, state-of-the-art ultrafast electron diffraction methods used to retrieve the molecular structure of gas-phase molecules with Angstrom and femtosecond spatio-temporal resolution. We first provide a historical and theoretical background to elastic electron scattering in its application to structural retrieval, followed by details of field-free and field-dressed ultrafast electron diffraction techniques. We discuss the application of these ultrafast methods to time-resolving chemical reactions in real-time, before providing a future outlook of the field and the challenges that exist today and in the future.
We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the laser induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO2 molecule excited by a near infrared few-cycle laser pulse. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.
Photoinduced isomerization reactions, including ring-opening reactions, lie at the heart of many processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics unfolding on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free electron laser to trace the ultrafast ring opening of gas phase thiophenone molecules following photoexcitation at 265 nm. When combined with cutting edge ab initio electronic structure and molecular dynamics calculations of both the excited and ground state molecules, the results provide unprecedented insights into both electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state is shown to be driven by ballistic SC bond extension and to be complete within 350 femtoseconds. Theory and experiment also allow clear visualization of the rich ground-state dynamics involving formation of, and interconversion between, several ring opened isomers and the reformed cyclic structure, and fragmentation (CO loss) over much longer timescales.
Visualizing molecular transformations in real-time requires a structural retrieval method with {AA}ngstrom spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method that is se nsitive to the atomic positions of hydrogen nuclei, with most methods possessing relatively low sensitivity to hydrogen scattering. Laser-induced electron diffraction (LIED) is a table top technique that can image ultrafast structural changes of gas-phase polyatomic molecules with sub-{AA}ngstrom and femtosecond spatiotemporal resolution together with relatively high sensitivity to hydrogen scattering. Here, we image the umbrella motion of an isolated ammonia molecule (NH$_3$) following its strong field ionization. Upon ionization of a neutral ammonia molecule, the ammonia cation (NH$_3^+$) undergoes an ultrafast geometrical transformation from a pyramidal ($Phi_{HNH} = 107 ^circ$) to planar ($Phi_{HNH}=120^circ$) structure in approximately 8 femtoseconds. Using LIED, we retrieve a near-planar ($Phi_{HNH}=117 pm 5^circ$) field-dressed NH$_3^+$ molecular structure $7.8-9.8$ femtoseconds after ionization. Our measured field-dressed NH$_3^+$ structure is in excellent agreement with our calculated equilibrium field dressed structure using quantum chemical ab initio calculations.
112 - Baptiste Sirjean 2007
This work reports a theoretical study of the gas phase unimolecular decomposition of cyclobutane, cyclopentane and cyclohexane by means of quantum chemical calculations. A biradical mechanism has been envisaged for each cycloalkane, and the main rout es for the decomposition of the biradicals formed have been investigated at the CBS-QB3 level of theory. Thermochemical data (delta H^0_f, S^0, C^0_p) for all the involved species have been obtained by means of isodesmic reactions. The contribution of hindered rotors has also been included. Activation barriers of each reaction have been analyzed to assess the 1 energetically most favorable pathways for the decomposition of biradicals. Rate constants have been derived for all elementary reactions using transition state theory at 1 atm and temperatures ranging from 600 to 2000 K. Global rate constant for the decomposition of the cyclic alkanes in molecular products have been calculated. Comparison between calculated and experimental results allowed to validate the theoretical approach. An important result is that the rotational barriers between the conformers, which are usually neglected, are of importance in decomposition rate of the largest biradicals. Ring strain energies (RSE) in transition states for ring opening have been estimated and show that the main part of RSE contained in the cyclic reactants is removed upon the activation process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا