ﻻ يوجد ملخص باللغة العربية
We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the laser induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO2 molecule excited by a near infrared few-cycle laser pulse. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.
We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the elec
In this paper, we discuss the possibility of imaging molecular orbitals from photoelectron spectra obtained via Laser Induced Electron Diffraction (LIED) in linear molecules. This is an extension of our work published recently in Physical Review A te
Visualizing molecular transformations in real-time requires a structural retrieval method with {AA}ngstrom spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method that is se
Laser-induced electron diffraction is an evolving tabletop method, which aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-{AA}ngstrom spatial and femtosecond temporal resolution. Here, we provide the general found
Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of