ترغب بنشر مسار تعليمي؟ اضغط هنا

CLEAR I: Ages and Metallicities of Quiescent Galaxies at $mathbf{1.0 < z < 1.8}$ Derived from Deep Hubble Space Telescope Grism Data

82   0   0.0 ( 0 )
 نشر من قبل Vicente Estrada-Carpenter
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use deep textit{Hubble Space Telescope} spectroscopy to constrain the metallicities and (editone{light-weighted}) ages of massive ($log M_ast/M_odotgtrsim10$) galaxies selected to have quiescent stellar populations at $1.0<z<1.8$. The data include 12--orbit depth coverage with the WFC3/G102 grism covering $sim$ $8,000<lambda<11,500$~AA, at a spectral resolution of $Rsim 210$ taken as part of the CANDELS Lyman-$alpha$ Emission at Reionization (CLEAR) survey. At $1.0<z<1.8$, the spectra cover important stellar population features in the rest-frame optical. We simulate a suite of stellar population models at the grism resolution, fit these to the data for each galaxy, and derive posterior likelihood distributions for metallicity and age. We stack the posteriors for subgroups of galaxies in different redshift ranges that include different combinations of stellar absorption features. Our results give editone{light-weighted ages of $t_{z sim 1.1}= 3.2pm 0.7$~Gyr, $t_{z sim 1.2}= 2.2pm 0.6$~Gyr, $t_{zsim1.3}= 3.1pm 0.6$~Gyr, and $t_{zsim1.6}= 2.0 pm 0.6$~Gyr, editone{for galaxies at $zsim 1.1$, 1.2, 1.3, and 1.6. This} implies that most of the massive quiescent galaxies at $1<z<1.8$ had formed $>68$% of their stellar mass by a redshift of $z>2$}. The posteriors give metallicities of editone{$Z_{zsim1.1}=1.16 pm 0.29$~$Z_odot$, $Z_{zsim1.2}=1.05 pm 0.34$~$Z_odot$, $Z_{zsim1.3}=1.00 pm 0.31$~$Z_odot$, and $Z_{zsim1.6}=0.95 pm 0.39$~$Z_odot$}. This is evidence that massive galaxies had enriched rapidly to approximately Solar metallicities as early as $zsim3$.



قيم البحث

اقرأ أيضاً

We present a rest-frame UV-optical stacked spectrum representative of quiescent galaxies at $1.0 < z < 1.3$ with log$(M_*/rm{M_odot}) > 10.8$. The stack is constructed using VANDELS survey data, combined with new KMOS observations. We apply two indep endent full-spectral-fitting approaches, obtaining consistent stellar ages and metallicities. We measure a total metallicity, [Z/H] = $-0.13pm0.08$, and an iron abundance, [Fe/H] = $-0.18pm0.08$, representing falls of $sim0.3$ dex and $sim0.15$ dex respectively compared with the local Universe. We also measure the alpha enhancement via the magnesium abundance, obtaining [Mg/Fe] = 0.23$pm$0.12, consistent with similar-mass galaxies in the local Universe, indicating no evolution in the average alpha enhancement of log$(M_*/rm{M_odot}) sim 11$ quiescent galaxies over the last 8 Gyr. This suggests the very high alpha enhancements recently reported for several very bright $zsim1-2$ quiescent galaxies are due to their extreme masses, in accordance with the well-known downsizing trend, rather than being typical of the $zgtrsim1$ population. The metallicity evolution we observe with redshift (falling [Z/H], [Fe/H], but constant [Mg/Fe]) is consistent with recent studies. We recover a mean stellar age of $2.5^{+0.6}_{-0.4}$ Gyr, corresponding to a formation redshift, $z_rm{form} = 2.4^{+0.6}_{-0.3}$. Recent studies have obtained varying average formation redshifts for $zgtrsim1$ massive quiescent galaxies, and, as these studies report consistent metallicities, we identify different star-formation-history models as the most likely cause. Larger spectroscopic samples from upcoming ground-based instruments will provide precise constraints on ages and metallicities at $zgtrsim1$. Combining these with precise $z>2$ quiescent-galaxy stellar-mass functions from JWST will provide an independent test of formation redshifts from spectral fitting.
We present Hubble WFC3/IR slitless grism spectra of a remarkably bright $zgtrsim10$ galaxy candidate, GN-z11, identified initially from CANDELS/GOODS-N imaging data. A significant spectroscopic continuum break is detected at $lambda=1.47pm0.01~mu$m. The new grism data, combined with the photometric data, rule out all plausible lower redshift solutions for this source. The only viable solution is that this continuum break is the Ly$alpha$ break redshifted to ${z_mathrm{grism}=11.09^{+0.08}_{-0.12}}$, just $sim$400 Myr after the Big Bang. This observation extends the current spectroscopic frontier by 150 Myr to well before the Planck (instantaneous) cosmic reionization peak at z~8.8, demonstrating that galaxy build-up was well underway early in the reionization epoch at z>10. GN-z11 is remarkably and unexpectedly luminous for a galaxy at such an early time: its UV luminosity is 3x larger than L* measured at z~6-8. The Spitzer IRAC detections up to 4.5 $mu$m of this galaxy are consistent with a stellar mass of ${sim10^{9}~M_odot}$. This spectroscopic redshift measurement suggests that the James Webb Space Telescope (JWST) will be able to similarly and easily confirm such sources at z>10 and characterize their physical properties through detailed spectroscopy. Furthermore, WFIRST, with its wide-field near-IR imaging, would find large numbers of similar galaxies and contribute greatly to JWSTs spectroscopy, if it is launched early enough to overlap with JWST.
144 - M. Onodera 2014
We investigate the stellar population properties of a sample of 24 massive quenched galaxies at $1.25<z_mathrm{spec}<2.09$ identified in the COSMOS field with our Subaru/MOIRCS near-IR spectroscopic observations. Tracing the stellar population proper ties as close to their major formation epoch as possible, we try to put constraints on the star formation history, post-quenching evolution, and possible progenitor star-forming populations for such massive quenched galaxies. By using a set of Lick absorption line indices on a rest-frame optical composite spectrum, the average age, metallicity [Z/H], and $alpha$-to-iron element abundance ratio [$alpha$/Fe] are derived as $log(mathrm{age}/mathrm{Gyr})=0.04_{-0.08}^{+0.10}$, $mathrm{[Z/H]}=0.24_{-0.14}^{+0.20}$, and $[alpha/mathrm{Fe}]=0.31_{-0.12}^{+0.12}$, respectively. If our sample of quenched galaxies at $langle z rangle = 1.6$ is evolved passively to $z=0$, their stellar population properties will align in excellent agreement with local counterparts at similar stellar velocity dispersions, which qualifies them as progenitors of local massive early-type galaxies. Redshift evolution of stellar population ages in quenched galaxies combined with low redshift measurements from the literature suggests a formation redshift of $z_mathrm{f} sim 2.3$ around which the bulk of stars in these galaxies have been formed. The measured [$alpha$/Fe] value indicates a star formation timescale of $lesssim 1$ Gyr, which can be translated into a specific star formation rate of $simeq 1,mathrm{Gyr}^{-1}$ prior to quenching. Based on these findings, we discuss identifying possible progenitor star-forming galaxies at $z simeq 2.3$. We identify normal star-forming galaxies, i.e, those on the star-forming main sequence, followed by a rapid quenching event, as likely precursors of the quenched galaxies at $langle z rangle = 1.6$ presented here.
Differentiating between active galactic nuclei (AGN) activity and star formation in z ~ 2 galaxies is difficult because traditional methods, such as line ratio diagnostics, change with redshift while multi-wavelength methods (X-ray, radio, IR) are se nsitive to only the brightest AGN. We have developed a new method for spatially resolving emission lines in HST/WFC3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O III]/H$beta$ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ~ sim 40% more low-mass and obscured AGN than obtained by classical methods. Based on our simulations, we developed a relationship that maps stellar mass, star formation rate, and measured [O III]/H$beta$ gradient to AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ~2 and find that our results are consistent with these studies. Using this gradient method will also be able to inform other galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved JWST data.
We present grism spectra of emission-line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 micron grism data in GOODS-South from the PEARS program, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [OIII], and [OII] emission lines detected in the redshift ranges 0.2<z<1.4, 1.2<z<2.2 and 2.0<z<3.3 respectively in the G102 (0.8-1.1 microns; R~210) and G141 (1.1-1.6 microns; R~130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [SII] and [SIII] lines). From these relatively shallow observations, line luminosities, star-formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m(AB)~25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Delta(z)~0.3-0.5). Additionally, one galaxy had no previously-measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m(AB)=26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z>2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا