ترغب بنشر مسار تعليمي؟ اضغط هنا

The ages, metallicities and element abundance ratios of massive quenched galaxies at z~1.6

145   0   0.0 ( 0 )
 نشر من قبل Masato Onodera
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Onodera




اسأل ChatGPT حول البحث

We investigate the stellar population properties of a sample of 24 massive quenched galaxies at $1.25<z_mathrm{spec}<2.09$ identified in the COSMOS field with our Subaru/MOIRCS near-IR spectroscopic observations. Tracing the stellar population properties as close to their major formation epoch as possible, we try to put constraints on the star formation history, post-quenching evolution, and possible progenitor star-forming populations for such massive quenched galaxies. By using a set of Lick absorption line indices on a rest-frame optical composite spectrum, the average age, metallicity [Z/H], and $alpha$-to-iron element abundance ratio [$alpha$/Fe] are derived as $log(mathrm{age}/mathrm{Gyr})=0.04_{-0.08}^{+0.10}$, $mathrm{[Z/H]}=0.24_{-0.14}^{+0.20}$, and $[alpha/mathrm{Fe}]=0.31_{-0.12}^{+0.12}$, respectively. If our sample of quenched galaxies at $langle z rangle = 1.6$ is evolved passively to $z=0$, their stellar population properties will align in excellent agreement with local counterparts at similar stellar velocity dispersions, which qualifies them as progenitors of local massive early-type galaxies. Redshift evolution of stellar population ages in quenched galaxies combined with low redshift measurements from the literature suggests a formation redshift of $z_mathrm{f} sim 2.3$ around which the bulk of stars in these galaxies have been formed. The measured [$alpha$/Fe] value indicates a star formation timescale of $lesssim 1$ Gyr, which can be translated into a specific star formation rate of $simeq 1,mathrm{Gyr}^{-1}$ prior to quenching. Based on these findings, we discuss identifying possible progenitor star-forming galaxies at $z simeq 2.3$. We identify normal star-forming galaxies, i.e, those on the star-forming main sequence, followed by a rapid quenching event, as likely precursors of the quenched galaxies at $langle z rangle = 1.6$ presented here.



قيم البحث

اقرأ أيضاً

The chemical composition of galaxies has been measured out to z~4. However, nearly all studies beyond z~0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galax ies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultra-deep rest-frame optical spectra of five massive quiescent galaxies at z~1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass-metallicity relation was already in place at z~1.4. While the [Mg/Fe]-mass relation at z~1.4 is consistent with the z<0.7 relation, [Fe/H] at z~1.4 is ~0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44(+0.08,-0.07) the most massive galaxy may be more alpha-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low-mass, less alpha-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star-formation timescales of 0.2-1.0 Gyr.
161 - A. Gallazzi 2014
The stellar populations of intermediate-redshift galaxies can shed light onto the growth of massive galaxies in the last 8 billion years. We perform deep, multi-object rest-frame optical spectroscopy with IMACS/Magellan of ~70 galaxies in the E-CDFS with redshift 0.65<z<0.75, apparent magnitude R>22.7 and stellar mass >10^{10}Msun. Following the Bayesian approach adopted for previous low-redshift studies, we constrain the stellar mass, mean stellar age and stellar metallicity of individual galaxies from stellar absorption features. We characterize for the first time the dependence of stellar metallicity and age on stellar mass at z~0.7 for all galaxies and for quiescent and star-forming galaxies separately. These relations for the whole sample have a similar shape as the z=0.1 SDSS analog, but are shifted by -0.28 dex in age and by -0.13 dex in metallicity, at odds with simple passive evolution. We find that no additional star formation and chemical enrichment are required for z=0.7 quiescent galaxies to evolve into the present-day quiescent population. However, this must be accompanied by the quenching of a fraction of z=0.7 Mstar>10^{11}Msun star-forming galaxies with metallicities comparable to those of quiescent galaxies, thus increasing the scatter in age without affecting the metallicity distribution. However rapid quenching of the entire population of massive star-forming galaxies at z=0.7 would be inconsistent with the age/metallicity--mass relation for the population as a whole and with the metallicity distribution of star-forming galaxies only, which are on average 0.12 dex less metal-rich than their local counterparts. This indicates chemical enrichment until the present in at least a fraction of the z=0.7 massive star-forming galaxies.[abridged]
We investigate the effects of dense environments on galaxy evolution by examining how the properties of galaxies in the z = 1.6 protocluster Cl 0218.3-0510 depend on their location. We determine galaxy properties using spectral energy distribution fi tting to 14-band photometry, including data at three wavelengths that tightly bracket the Balmer and 4000A breaks of the protocluster galaxies. We find that two-thirds of the protocluster galaxies, which lie between several compact groups, are indistinguishable from field galaxies. The other third, which reside within the groups, differ significantly from the intergroup galaxies in both colour and specific star formation rate. We find that the fraction of red galaxies within the massive protocluster groups is twice that of the intergroup region. These excess red galaxies are due to enhanced fractions of both passive galaxies (1.7 times that of the intergroup region) and dusty star-forming galaxies (3 times that of the intergroup region). We infer that some protocluster galaxies are processed in the groups before the cluster collapses. These processes act to suppress star formation and change the mode of star formation from unobscured to obscured.
78 - Yu Luo , Xi Kang (3 2020
Quenched massive spiral galaxies have attracted great attention recently, as more data is available to constrain their environment and cold gas content. However, the quenching mechanism is still uncertain, as it depends on the mass range and baryon b udget of the galaxy. In this letter, we report the identification of a rare population of very massive, quenched spiral galaxies with stellar mass $gtrsim10^{11}{rm~M_odot}$ and halo mass $gtrsim10^{13}{rm~M_odot}$ from the Sloan Digital Sky Survey at redshift $zsim0.1$. Our CO observations using the IRAM-30m telescope show that these galaxies contain only a small amount of molecular gas. Similar galaxies are also seen in the state-of-the-art semi-analytical models and hydro-dynamical simulations. It is found from these theoretical models that these quenched spiral galaxies harbor massive black holes, suggesting that feedback from the central black holes has quenched these spiral galaxies. This quenching mechanism seems to challenge the popular scenario of the co-evolution between massive black holes and massive bulges.
78 - E. A. Cooke 2019
We analyse 850um continuum observations of eight massive X-ray detected galaxy clusters at z~0.8-1.6 taken with SCUBA-2 on the James Clerk Maxwell Telescope. We find an average overdensity of 850um-selected sources of a factor of 4+/-2 per cluster wi thin the central 1Mpc compared to the field. We investigate the multiwavelength properties of these sources and identify 34 infrared counterparts to 26 SCUBA-2 sources. Their colours suggest that the majority of these counterparts are probable cluster members. We use the multi-wavelength far-infrared photometry to measure the total luminosities and total cluster star-formation rates demonstrating that they are roughly three orders of magnitude higher than local clusters. We predict the H-band luminosities of the descendants of our cluster submillimetre galaxies and find that their stellar luminosity distribution is consistent with that of passive elliptical galaxies in z~0 clusters. Together, the faded descendants of the passive cluster population already in place at z~1 and the cluster submillimetre galaxies are able to account for the total luminosity function of early-type cluster galaxies at z~0. This suggests that the majority of the luminous passive population in z~0 clusters are likely to have formed at z>>1 through an extreme, dust-obscured starburst event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا