ﻻ يوجد ملخص باللغة العربية
Exerting control of the magnetic exchange interaction in heterostructures is of both basic interest and has potential for use in spin-based applications relying on quantum effects. We here show that the sign of the exchange interaction in a spin-valve, determining whether the ferro- or antiferromagnetic configuration is favored, can be controlled via an electric voltage. This occurs due to an interplay between a nonequilibrium quasiparticle distribution and the presence of spin-polarized Cooper pairs. Additionally, we show that a voltage-induced distribution controls the anomalous supercurrent that occurs in magnetic Josephson junctions, obviating the challenging task to manipulate the magnetic texture of the system. This demonstrates that two key phenomena in superconducting spintronics, the magnetic exchange interaction and the phase shift generating the anomalous Josephson effect, can be controlled electrically. Our findings are of relevance for spin-based superconducting devices which in practice most likely have to be operated precisely by nonequilibrium effects.
We discuss the response of an rf-SQUID formed by anomalous Josephson junctions embedded in a superconducting ring with a non-negligible inductance. We demonstrate that a properly sweeping in-plane magnetic field can cause both the total flux and the
The anomalous proximity effect in dirty superconducting junctions is one of most striking phenomena highlighting the profound nature of Majorana bound states and odd-frequency Cooper pairs in topological superconductors. Motivated by the recent exper
We study the Josephson effect in the multiterminal junction of topological superconductors. We use the symmetry-constrained scattering matrix approach to derive band dispersions of emergent sub-gap Andreev bound states in a multidimensional parameter
We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the l
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transpor