ﻻ يوجد ملخص باللغة العربية
We have studied the feasibility of a silicon photomultiplier (SiPM) to detect liquid xenon (LXe) scintillation light. The SiPM was operated inside a small volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241 alpha source. The gain of the SiPM at this temperature was estimated to be 1.8 x 10^6 with bias voltage at 52 V. Based on the geometry of the setup, the quantum efficiency of the SiPM was estimated to be 22% at the Xe wavelength of 178 nm. The low excess noise factor, high single photoelectron detection efficiency, and low bias voltage of SiPMs make them attractive alternative UV photon detection devices to photomultiplier tubes (PMTs) for liquid xenon detectors, especially for experiments requiring a very low energy detection threshold, such as neutralino dark matter searches.
Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detecto
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition
Future tonne-scale liquefied noble gas detectors depend on efficient light detection in the VUV range. In the past years Silicon Photomultipliers (SiPMs) have emerged as a valid alternative to standard photomultiplier tubes or large area avalanche ph
Presented here are first tests of a Gaseous Photomultiplier based on a cascade of Thick GEM structures intended for gamma-ray position reconstruction in liquid Argon. The detector has a MgF$_2$ window, transparent to VUV light, and a CsI photocathode
Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied el