ﻻ يوجد ملخص باللغة العربية
The high excitation planetary nebula, NGC 6302, has been imaged in two far-ultraviolet (FUV) filters, F169M (Sapphire; {lambda}$_{rm eff}$: 1608 {AA}) and F172M (Silica; {lambda}$_{rm eff}$: 1717 {AA}) and two NUV filters, N219M (B15; {lambda}$_{rm eff}$: 2196 {AA}) and N279N (N2; {lambda}$_{rm eff}$: 2792 {AA}) with the Ultra Violet Imaging Telescope (UVIT). The FUV F169M image shows faint emission lobes that extend to about 5 arcmin on either side of the central source. Faint orthogonal collimated jet-like structures are present on either side of the FUV lobes through the central source. These structures are not present in the two NUV filters nor in the FUV F172M filter. Optical and IR images of NGC 6302 show bright emission bipolar lobes in the east-west direction with a massive torus of molecular gas and dust seen as a dark lane in the north-south direction. The FUV lobes are much more extended and oriented at a position angle of 113{deg}. They and the jet-like structures might be remnants of an earlier evolutionary phase, prior to the dramatic explosive event that triggered the Hubble type bipolar flows approximately 2200 years ago. The source of the FUV lobe and jet emission is not known, but is likely due to fluorescent emission from H$_2$ molecules. The cause of the difference in orientation of optical and FUV lobes is not clear and, we speculate, could be related to two binary interactions.
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high speed wind from WC8 central star (CS) with the nebula. It shows strong Civ 1550 {AA} emission that cannot be explained by thermal processes alone
The spectral region between 1250 Angstroms - 3000 Angstroms contains important spectral lines to understand the morphological structures and evolution of planetary nebulae. This is the region sampled by UVIT through various filter bands both in the
NGC 6302 is one of the highest ionization planetary nebulae known and shows emission from species with ionization potential >300eV. The temperature of the central star must be >200,000K to photoionize the nebula, and has been suggested to be up to ~
We present the results of a comprehensive, near-UV-to-near-IR Hubble Space Telescope WFC3 imaging study of the young planetary nebula (PN) NGC 6302, the archetype of the class of extreme bi-lobed, pinched-waist PNe that are rich in dust and molecular