ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary Nebulae with UVIT: A Progress Report

90   0   0.0 ( 0 )
 نشر من قبل Gajendra Pandey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Kameswara Rao




اسأل ChatGPT حول البحث

The spectral region between 1250 Angstroms - 3000 Angstroms contains important spectral lines to understand the morphological structures and evolution of planetary nebulae. This is the region sampled by UVIT through various filter bands both in the continuum and in emission lines (e.g. C IV, He I, Mg II etc.). We have mapped several planetary nebulae with different characteristics, ranging in morphology from bipolar to wide and diffuse, and in various states of ionization, comparing the UV with the x-ray morphologies wherever the x-ray images were also available. The major unanticipated discovery with UVIT has been the detection of previously undetected, cold, fluorescent, molecular hydrogen gas surrounding some planetary nebulae. This may be a possible solution to the missing mass problem. Here we present a review of our studies so far done (both published and on going) with UVIT.

قيم البحث

اقرأ أيضاً

458 - D. Schonberner , M. Steffen 2019
Individual distances to planetary nebulae are of the utmost relevance for our understanding of post-asymptotic giant-branch evolution because they allow a precise determination of stellar and nebular properties. Also, objects with individual distance s serve as calibrators for the so-called statistical distances based on secondary nebular properties. With independently known distances, it is possible to check empirically our understanding of the formation and evolution of planetary nebulae as suggested by existing hydrodynamical simulations. We compared the expansion parallaxes that have recently been determined for a number of planetary nebulae with the trigonometric parallaxes provided by the Gaia Data Release 2. Except for two out of 11 nebulae, we found good agreement between the expansion and the Gaia trigonometric parallaxes without any systematic trend with distance. Therefore, the Gaia measurements also prove that the correction factors necessary to convert proper motions of shocks into Doppler velocities cannot be ignored. Rather, the size of these correction factors and their evolution with time as predicted by 1-D hydrodynamical models of planetary nebulae is basically validated. These correction factors are generally greater than unity and are different for the outer shell and the inner bright rim of a planetary nebula. The Gaia measurements also confirm earlier findings that spectroscopic methods often lead to an overestimation of the distance. They also show that even modelling of the entire system of star and nebula by means of sophisticated photoionization modeling may not always provide reliable results. The Gaia measurements confirm the basic correctness of the present radiation-hydrodynamics models, which predict that both the shell and the rim of a planetary nebula are two independently expanding entities.
Context: Many if not most planetary nebulae (PNe) are now thought to be the outcome of binary evolutionary scenarios. However only a few percent of PNe in the Milky Way are known to host binary systems. The high precision repeated observing and long time baseline of Gaia make it well suited to detect new close binaries through photometric variability. Aims: We aim to find new close binary central stars of PNe (CSPNe) using data from the Gaia mission, building towards a statistically significant sample of post common envelope, close binary CSPNe. Methods: As the vast majority of Gaia sources do not have published epoch photometry, we use the uncertainty in the mean photometry as a proxy for determining the variability of our CSPN sample in the second Gaia data release. We derive a quantity that expresses the significance of the variability, and consider what is necessary to build a clean sample of genuine variable sources. Results: Our selection recovers a large fraction of the known close binary CSPN population, while other CSPNe lying in the same region of the parameter space likely represent low-hanging fruit for ground-based confirmatory followup observations. Gaia epoch photometry for four of the newly identified variable sources confirms that the variability is genuine and consistent with binarity
159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f ew years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [N II] during several observing campaigns using two moderate-aperture tele scopes, at the Complejo Astronomico El Leoncito (CASLEO), and the Estacion Astrofisica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [N II]. We compare the new images with those available in the literature, and briefly describe all cases in which our [N II] images reveal new and interesting structures.
We study the relation between the chemical composition and the type of dust present in a group of 20 Galactic planetary nebulae (PNe) that have high quality optical and infrared spectra. The optical spectra are used, together with the best available ionization correction factors, to calculate the abundances of Ar, C, Cl, He, N, Ne, and O relative to H. The infrared spectra are used to classify the PNe in two groups depending on whether the observed dust features are representative of oxygen-rich or carbon-rich environments. The sample contains one object from the halo, eight from the bulge, and eleven from the local disc. We compare their chemical abundances with nucleosynthesis model predictions and with the ones obtained in seven Galactic H II regions of the solar neighbourhood. We find evidence of O enrichment (by $sim$ 0.3 dex) in all but one of the PNe with carbon-rich dust (CRD). Our analysis shows that Ar, and especially Cl, are the best metallicity indicators of the progenitors of PNe. There is a tight correlation between the abundances of Ar and Cl in all the objects, in agreement with a lockstep evolution of both elements. The range of metallicities implied by the Cl abundances covers one order of magnitude and we find significant differences in the initial masses and metallicities of the PNe with CRD and oxygen-rich dust (ORD). The PNe with CRD tend to have intermediate masses and low metallicities, whereas most of the PNe with ORD show higher enrichments in N and He, suggesting that they had high-mass progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا