ﻻ يوجد ملخص باللغة العربية
We consider the graphs involved in the theoretical physics model known as the colored Sachdev-Ye-Kitaev (SYK) model. We study in detail their combinatorial properties at any order in the so-called $1/N$ expansion, and we enumerate these graphs asymptotically. Because of the duality between colored graphs involving $q+1$ colors and colored triangulations in dimension $q$, our results apply to the asymptotic enumeration of spaces that generalize unicellular maps - in the sense that they are obtained from a single building block - for which a higher-dimensional generalization of the genus is kept fixed.
The Sachdev-Ye-Kitaev (SYK) model is a model of $q$ interacting fermions whose large N limit is dominated by melonic graphs. In this review we first present a diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it
We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the i
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
We present a detailed quantitative analysis of spectral correlations in the Sachdev-Ye-Kitaev (SYK) model. We find that the deviations from universal Random Matrix Theory (RMT) behavior are due to a small number of long-wavelength fluctuations from o