ﻻ يوجد ملخص باللغة العربية
We analyze the Schrodinger operator in two-dimensions with an attractive potential given by a Bessel-Macdonald function. This operator is derived in the non-relativistic approximation of planar quantum electrodynamics (${rm QED}_3$) models as a framework for evaluation of two-quasiparticle scattering potentials. The analysis is motivated keeping in mind the fact that parity-preserving ${rm QED}_3$ models can provide a possible explanation for the behavior of superconductors. Initially, we study the self-adjointness and spectral properties of the Schrodinger operator modeling the non-relativistic approximation of these ${rm QED}_3$ models. Then, by using {em Set^o-type estimates}, an estimate is derived of the number of two-particle bound states which depends directly on the value of the effective coupling constant, $C$, for {em any} value of the angular momentum. In fact, this result in connection with the condition that guarantees the self-adjointness of the Schrodinger operator shows that there can always be a large number of two-quasiparticle bound states in planar quantum electrodynamics models. In particular, we show the existence of an isolated two-quasiparticle bound state if the effective coupling constant $C in (0,2)$ in case of zero angular momentum. To the best of our knowledge, this result has not yet been addressed in the literature. Additionally, we obtain an explicit estimate for the energy gap of two-quasiparticle bound states which might be applied to high-$T_c$ $s$-wave Cooper-type superconductors as well as to $s$-wave electron-polaron--electron-polaron bound states (bipolarons) in mass-gap graphene systems.
The Brown-Ravenhall operator was initially proposed as an alternative to describe the fermion-fermion interaction via Coulomb potential and subject to relativity. This operator is defined in terms of the associated Dirac operator and the projection o
In this paper we provide a detailed description of the eigenvalue $ E_{D}(x_0)leq 0$ (respectively $ E_{N}(x_0)leq 0$) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neum
Based on the ideology of the Maslovs complex germ theory, a method has been developed for finding an exact solution of the Cauchy problem for a Hartree-type equation with a quadratic potential in the class of semiclassically concentrated functions. T
We first show some properties such as smoothness and monotone decreasingness of the solution to the BCS-Bogoliubov gap equation for superconductivity. Moreover we give the behavior of the solution with respect to the temperature near the transition t
In the preceding paper, introducing a cutoff, the present author gave a proof of the statement that the transition to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity on the basis of fixed-po