ﻻ يوجد ملخص باللغة العربية
The direction of the orbital angular momentum of the $B$-phase of superfluid $^3$He can be controlled by engineering the anisotropy of the silica aerogel framework within which it is imbibed. In this work, we report our discovery of an unusual and abrupt `orbital-flop transition of the superfluid angular momentum between orientations perpendicular and parallel to the anisotropy axis. The transition has no hysteresis, warming or cooling, as expected for a continuous thermodynamic transition, and is not the result of a competition between strain and magnetic field. This demonstrates the spontaneous reorientation of the order parameter of an unconventional BCS condensate.
We investigate the bulk orbital angular momentum (AM) in a two-dimensional hole-doped topological superconductor (SC) which is composed of a hole-doped semiconductor thin film, a magnetic insulator, and an $s$-wave SC and is characterized by the Cher
The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated sub-micrometer superfluid 4He droplets is studied by ultr
We study possible superconducting states in transition metal dichalcogenide (TMD) monolayers, assuming an on-site pairing potential that includes both intra- and inter-orbital terms. We find that if the mirror symmetry with respect to the systems pla
Recently, exciton-polaritons in a semiconductor microcavity were found to condense into a coherent ground state much like a Bose-Einstein condensate and a superfluid. They have become a unique testbed for generating and manipulating quantum vortices
Lights orbital angular momentum (OAM) is an unbounded degree of freedom emerging in helical beams that appears very advantageous technologically. Using a chiral microlaser, i.e. an integrated device that allows generating an emission carrying a net O