ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular momentum in rotating superfluid droplets

77   0   0.0 ( 0 )
 نشر من قبل Vilesov Andrey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated sub-micrometer superfluid 4He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.

قيم البحث

اقرأ أيضاً

Previous single-pulse extreme ultraviolet and X-ray coherent diffraction studies revealed that superfluid 4He droplets obtained in free jet expansion acquire sizable angular momentum, resulting in significant centrifugal distortion. Similar experimen ts with normal fluid 3He droplets may help elucidating the origin of the of the large degree of rotational excitation and highlight similarities and differences of dynamics in normal and superfluid droplets. Here, we present the first comparison of the shapes of isolated 3He and 4He droplets following expansion of the corresponding fluids in vacuum at temperatures as low as ~ 2 K. Large 3He and 4He droplets with average radii of ~160 nm and ~350 nm, respectively, were produced. We find that the majority of the 3He droplets in the beam correspond to rotating oblate spheroids with reduced average angular momentum ($Lambda$) and reduced angular velocities ($Omega$) similar to that of 4He droplets. Given the different physical nature of 3He and 4He, this similarity in $Lambda$ and $Omega$ may be surprising and suggest that similar mechanisms induce rotation regardless of the isotope. We hypothesized that the observed distribution of droplet sizes and angular momenta stem from processes in the dense region close to the nozzle. In this region, the significant velocity spread and collisions between the droplets induce excessive rotation followed by droplet fission. The process may repeat itself several times before the droplets enter the collision-fee high vacuum region further downstream.
99 - J. Gao , W. Guo , S. Yui 2018
There are two commonly discussed forms of quantum turbulence in superfluid $^4$He above 1K: in one there is a random tangle of quantizes vortex lines, existing in the presence of a non-turbulent normal fluid; in the second there is a coupled turbulen t motion of the two fluids, often exhibiting quasi-classical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, $L$, in the former case is often described by the equation $dL/dt=-chi_2 (kappa/2pi)L^2$, where $kappa$ is the quantum of circulation, and $chi_2$ is a dimensionless parameter of order unity. The decay of total turbulent energy, $E$, in the second case is often characterized by an effective kinematic viscosity, $ u$, such that $dE/dt=- u kappa^2 L^2$. We present new values of $chi_2$ derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarise what is presently known about the values of $ u$ from experiment, and we present a brief introductory discussion of the relationship between $chi_2$ and $ u$, leaving a more detailed discussion to a later paper.
Motivated by recent experiments, we study normal-phase rotating He-3 droplets within Density Functional Theory in a semi-classical approach. The sequence of rotating droplet shapes as a function of angular momentum are found to agree with those of ro tating classical droplets, evolving from axisymmetric oblate to triaxial prolate to two-lobed shapes as the angular momentum of the droplet increases. Our results, which are obtained for droplets of nanoscopic size, are rescaled to the mesoscopic size characterizing ongoing experimental measurements, allowing for a direct comparison of shapes. The stability curve in the angular velocity-angular momentum plane shows small deviations from the classical rotating drop model predictions, whose magnitude increases with angular momentum. We attribute these deviations to effects not included in the simplified classical model description of a rotating fluid held together by surface tension, i.e. to surface diffuseness, curvature and finite compressibility, and to quantum effects associated with deformation of the He-3 Fermi surface. The influence of all these effects is expected to diminish as the droplet size increases, making the classical rotating droplet model a quite accurate representation of He-3 rotation.
We investigate the lifetime of angular momentum in an ultracold strongly interacting Fermi gas, confined in a trap with controllable ellipticity. To determine the angular momentum we measure the precession of the radial quadrupole mode. We find that in the vicinity of a Feshbach resonance the deeply hydrodynamic behavior in the normal phase leads to a very long lifetime of the angular momentum. Furthermore, we examine the dependence of the decay rate of the angular momentum on the ellipticity of the trapping potential and the interaction strength. The results are in general agreement with the theoretically expected behavior for a Boltzmann gas.
We develop an analytic theory of strong anisotropy of the energy spectra in the thermally-driven turbulent counterflow of superfluid He-4. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy f lux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by the numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiment, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade-dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is a part of the theme issue Scaling the turbulence edifice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا