ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete Hamiltonians of discrete Painleve equations

90   0   0.0 ( 0 )
 نشر من قبل Akane Nakamura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We express discrete Painleve equations as discrete Hamiltonian systems. The discrete Hamiltonian systems here mean the canonical transformations defined by generating functions. Our construction relies on the classification of the discrete Painleve equations based on the surface-type. The discrete Hamiltonians we obtain are written in the logarithm and dilogarithm functions.



قيم البحث

اقرأ أيضاً

162 - Anton Dzhamay 2009
We study factorizations of rational matrix functions with simple poles on the Riemann sphere. For the quadratic case (two poles) we show, using multiplicative representations of such matrix functions, that a good coordinate system on this space is gi ven by a mix of residue eigenvectors of the matrix and its inverse. Our approach is motivated by the theory of discrete isomonodromic transformations and their relationship with difference Painleve equations. In particular, in these coordinates, basic isomonodromic transformations take the form of the discrete Euler-Lagrange equations. Secondly we show that dPV equations, previously obtained in this context by D. Arinkin and A. Borodin, can be understood as simple relationships between the residues of such matrices and their inverses.
Although the theory of discrete Painleve (dP) equations is rather young, more and more examples of such equations appear in interesting and important applications. Thus, it is essential to be able to recognize these equations, to be able to identify their type, and to see where they belong in the classification scheme. The definite classification scheme for dP equations was proposed by H. Sakai, who used geometric ideas to identify 22 different classes of these equations. However, in a major contrast with the theory of ordinary differential Painleve equations, there are infinitely many non-equivalent discrete equations in each class. Thus, there is no general form for a dP equation in each class, although some nice canonical examples in each equation class are known. The main objective of this paper is to illustrate that, in addition to providing the classification scheme, the geometric ideas of Sakai give us a powerful tool to study dP equations. We consider a very complicated example of a dP equation that describes a simple Schlesinger transformation of a Fuchsian system and we show how this equation can be identified with a much simpler canonical example of the dP equation of the same type and moreover, we give an explicit change of coordinates transforming one equation into the other. Among our main tools are the birational representation of the affine Weyl symmetry group of the equation and the period map. Even though we focus on a concrete example, the techniques that we use are general and can be easily adapted to other examples.
Schlesinger transformations are algebraic transformations of a Fuchsian system that preserve its monodromy representation and act on the characteristic indices of the system by integral shifts. One of the important reasons to study such transformatio ns is the relationship between Schlesinger transformations and discrete Painleve equations; this is also the main theme behind our work. We derive emph{discrete Schlesinger evolution equations} describing discrete dynamical systems generated by elementary Schlesinger transformations and give their discrete Hamiltonian description w.r.t.~the standard symplectic structure on the space of Fuchsian systems. As an application, we compute explicitly two examples of reduction from Schlesinger transformations to difference Painleve equations. The first example, d-$Pbig(D_{4}^{(1)}big)$ (or difference Painleve V), corresponds to Backlund transformations for continuous $P_{text{VI}}$. The second example, d-$Pbig(A_{2}^{(1)*}big)$ (with the symmetry group $E_{6}^{(1)}$), is purely discrete. We also describe the role played by the geometry of the Okamoto space of initial conditions in comparing different equations of the same type.
63 - R. S. Ward 2015
Self-dual Yang-Mills instantons on $R^4$ correspond to algebraic ADHM data. The ADHM equations for $S^1$-symmetric instantons give a one-dimensional integrable lattice system, which may be viewed as an discretization of the Nahm equations. In this no te, we see that generalized ADHM data for $T^2$-symmetric instantons gives an integrable two-dimensional lattice system, which may be viewed as a discrete version of the Hitchin equations.
It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel-Roberts-Thompson mappings, can be deautonomized to discrete Painleve equations. However, the dependence of this procedure on the choice of a par ticular elliptic fiber has not been sufficiently investigated. In this paper we establish a way of performing the deautonomization for a pair of an autonomous mapping and a fiber. %By choosing a particular Starting from a single autonomous mapping but varying the type of a chosen fiber, we obtain different types of discrete Painleve equations using this deautonomization procedure. We also introduce a technique for reconstructing a mapping from the knowledge of its induced action on the Picard group and some additional geometric data. This technique allows us to obtain factorized expressions of discrete Painleve equations, including the elliptic case. Further, by imposing certain restrictions on such non-autonomous mappings we obtain new and simple elliptic difference Painleve equations, including examples whose symmetry groups do not appear explicitly in Sakais classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا