ﻻ يوجد ملخص باللغة العربية
Cosmic photons can be efficiently collected by broadband intensity mapping but information on their emission redshift and frequency is largely lost. We introduce a technique to statistically recover these otherwise collapsed dimensions by exploiting information in spatial fluctuations and apply it to the Galaxy Evolution Explorer (GALEX) All Sky and Medium Imaging Surveys. By spatially cross-correlating photons in the GALEX far-UV (1500A) and near-UV (2300A) bands with a million spectroscopic objects in the Sloan Digital Sky Survey as a function of redshift, we robustly detect the redshift-dependent intensity of the UV background (UVB) modulated by its clustering bias up to $zsim2$. These measurements clearly reveal the imprints of UVB spectral features redshifting through the filters. Using a simple parameterization, we simultaneously fit a UVB emissivity and clustering bias factor to these observations and constrain the main spectral features of the UVB spectrum: (i) the Lyman break, (ii) the non-ionizing UV continuum, which agrees with the Haardt & Madau model but does not rely on any assumption regarding the nature of the sources, and (iii) the Ly$alpha$ emission, whose luminosity density is consistent with estimates of the combined galaxy and AGN contributions at $zsim1$. Because the technique probes the total background including low surface brightness emission, we place constraints on the amount of UV light originating from the diffuse intergalactic medium (IGM). Finally, the clustering bias of UV photons is found to be chromatic and evolving. Our frequency- and redshift-dependent UVB measurement delivers a summary statistic of the universes net radiation output from stars, black holes, and the IGM combined.
We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model (Faucher-Giguere et al. 2009), the new model provides a better match to a large number of up-to-date empirical constraints, includ
We use a sample of 1669 QSOs ($r<20.15$, $3.6<z<4.0$) from the BOSS survey to study the intrinsic shape of their continuum and the Lyman continuum photon escape fraction (f$_{esc}$), estimated as the ratio between the observed flux and the expected i
Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, p
Current and future generations of intensity mapping surveys promise dramatic improvements in our understanding of galaxy evolution and large-scale structure. An intensity map provides a census of the cumulative emission from all galaxies in a given r
We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used