ترغب بنشر مسار تعليمي؟ اضغط هنا

Local disc model in view of Gaia DR1 and RAVE data

63   0   0.0 ( 0 )
 نشر من قبل Kseniia Sysoliatina
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Sysoliatina




اسأل ChatGPT حول البحث

We test the performance of the semi-analytic self-consistent Just-Jahrei{ss} disc model (JJ model) with the astrometric data from the Tycho-Gaia Astrometric Solution (TGAS) sub-catalogue of the first Gaia data release (Gaia DR1), as well as the radial velocities from the fifth data release of the Radial Velocity Experiment survey (RAVE DR5). We use a sample of 19,746 thin disc stars from the TGAS$times$RAVE cross-match selected in the local solar cylinder of 300 pc radius and 1 kpc height below the Galactic plane and simulate this sample via the forward modelling technique. First, we convert the predicted vertical density laws of the thin disc populations into a mock sample. Then the obtained mock populations are reddened with a 3D dust map and are subjected to the selection criteria corresponding to the RAVE and TGAS observational limitations as well as to additional cuts applied to the data sample. We calculate the quantities of interest separately at different heights above the Galactic plane taking into account the distance error effects separately in horizontal and vertical directions. We investigate the simulated sample in terms of the vertical number density profiles, Hess diagrams and velocity distribution functions. Basing on a good agreement of our simulations with the data, we conclude that our fiducial disc model confidently reproduces the vertical trends in the thin disc stellar population properties. Thus, it can serve as a starting point for the future extension of the JJ model to other Galactocentric distances.

قيم البحث

اقرأ أيضاً

93 - Jo Bovy 2016
The spatial variations of the velocity field of local stars provide direct evidence of Galactic differential rotation. The local divergence, shear, and vorticity of the velocity field---the traditional Oort constants---can be measured based purely on astrometric measurements and in particular depend linearly on proper motion and parallax. I use data for 304,267 main-sequence stars from the Gaia DR1 Tycho-Gaia Astrometric Solution to perform a local, precise measurement of the Oort constants at a typical heliocentric distance of 230 pc. The pattern of proper motions for these stars clearly displays the expected effects from differential rotation. I measure the Oort constants to be: A = 15.3+/-0.4 km/s/kpc, B = -11.9+/-0.4 km/s/kpc, C = -3.2+/-0.4 km/s/kpc and K = -3.3+/-0.6 km/s/kpc, with no color trend over a wide range of stellar populations. These first confident measurements of C and K clearly demonstrate the importance of non-axisymmetry for the velocity field of local stars and they provide strong constraints on non-axisymmetric models of the Milky Way.
We present the results of a systematic Milky Way satellite search performed across an array of publicly available wide-area photometric surveys. Our aim is to complement previous searches by widening the parameter space covered. Specifically, we focu s on objects smaller than $1$ and include old, young, metal poor and metal rich stellar population masks. As a result we find 9 new likely genuine stellar systems in data from GAIA, DES, and Pan-STARRS, which were picked from the candidate list because of conspicuous counterparts in the cut-out images. The presented systems are all very compact ($r_h<1$) and faint ($M_Vgtrsim-3$), and are associated either with the Galactic disk, or the Magellanic Clouds. While most of the stellar systems look like Open Clusters, their exact classification is, as of today, unclear. With these discoveries, we extend the parameter space occupied by star clusters to sizes and luminosities previously unexplored and demonstrate that rather than two distinct classes of Globular and Open clusters, there appears to be a continuity of objects, unmarked by a clear decision boundary.
96 - Kohei Hattori 2018
The origin of the Hercules stream, the most prominent velocity substructure in the Solar neighbour disc stars, is still under debate. Recent accurate measurements of position, velocity, and metallicity provided by Tycho Gaia Astrometric Solution (TGA S) and RAdial Velocity Experiments (RAVE) have revealed that the Hercules stream is most clearly seen in the metal-rich region ([Fe/H] > 0), while it is not clearly seen in lower metallicity region ([Fe/H] < -0.25). By using a large number of chemo-dynamical 2D test-particle simulations with a rotating bar and/or spiral arms, we find that the observed [Fe/H] dependence of the Hercules stream is a natural consequence of the inside-out formation of the stellar disc and the existence of highly non-closed orbits in the rotating frame of the bar or spiral arms. Our successful models that reproduce the observed properties of the Hercules stream include not only fast-bar-only and fast-bar+spiral models, but also slow-bar+spiral models. This indicates that it is very difficult to estimate the pattern speed of the bar or spiral arms based only on the observations of the Hercules stream in the Solar neighbourhood. As a by-product of our simulations, we make some predictions about the locations across the Galactic plane where we can observe velocity bimodality that is not associated with the Hercules stream. These predictions can be tested by the Gaia Data Release 2, and such a test will improve our understanding of the evolution of the Milky Way stellar disc.
144 - O. Golubov , A. Just , O. Bienayme 2013
The determination of the LSR is still a matter of debate. The classical value of the tangential peculiar motion of the Sun with respect to the LSR was challenged in recent years, claiming a significantly larger value. We show that the RAdial Velocity Experiment (RAVE) sample of dwarf stars is an excellent data set to derive tighter boundary conditions to chemodynamical evolution models of the extended solar neighbourhood. We present an improved Jeans analysis, which allows a better interpretation of the measured kinematics of stellar populations in the Milky Way disc. We propose an improved version of the Stromberg relation with the radial scalelengths as the only unknown. Binning RAVE stars in metallicity reveals a bigger asymmetric drift (corresponding to a smaller radial scalelength) for more metal-rich populations. With the standard assumption of velocity-dispersion independent radial scalelengths in each metallicity bin, we redetermine the LSR. The new Stromberg equation yields a joint LSR value of V_sun=3.06 pm 0.68 km/s, which is even smaller than the classical value based on Hipparcos data. The corresponding radial scalelength increases from 1.6 kpc for the metal-rich bin to 2.9 kpc for the metal-poor bin, with a trend of an even larger scalelength for young metal-poor stars. When adopting the recent Schonrich value of V_sun=12.24 km/s for the LSR, the new Stromberg equation yields much larger individual radial scalelengths of the RAVE subpopulations, which seem unphysical in part. The new Stromberg equation allows a cleaner interpretation of the kinematic data of disc stars in terms of radial scalelengths. Lifting the LSR value by a few km/s compared to the classical value results in strongly increased radial scalelengths with a trend of smaller values for larger velocity dispersions.
We construct the rotation curve of the Milky Way in the extended solar neighbourhood using a sample of SEGUE (Sloan Extension for Galactic Understanding and Exploration) G-dwarfs. We investigate the rotation curve shape for the presence of any peculi arities just outside the solar radius as has been reported by some authors. We approach the problem in a framework of classical Jeans analysis. Using the most recent data from RAVE (RAdial Velocity Experiment), we determine the solar peculiar velocity and the radial scalelengths for the three populations of different metallicities representing the Galactic thin disc. Then with the same binning in metallicity for the SEGUE G-dwarfs, we construct the rotation curve in the range of Galactocentric distances 7-10 kpc. We derive the circular velocity by correcting the mean tangential velocity for the asymmetric drift in each distance bin. With SEGUE data we also calculate the radial scalelength of the thick disc taking as known the derived peculiar motion of the Sun and the slope of the rotation curve. The rotation curve constructed through SEGUE G-dwarfs appears to be smooth in the selected radial range. The local kinematics of the thin disc rotation as determined in the framework of our new careful analysis does not favour the presence of a massive overdensity ring just outside the solar radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا