ﻻ يوجد ملخص باللغة العربية
We present the results of a systematic Milky Way satellite search performed across an array of publicly available wide-area photometric surveys. Our aim is to complement previous searches by widening the parameter space covered. Specifically, we focus on objects smaller than $1$ and include old, young, metal poor and metal rich stellar population masks. As a result we find 9 new likely genuine stellar systems in data from GAIA, DES, and Pan-STARRS, which were picked from the candidate list because of conspicuous counterparts in the cut-out images. The presented systems are all very compact ($r_h<1$) and faint ($M_Vgtrsim-3$), and are associated either with the Galactic disk, or the Magellanic Clouds. While most of the stellar systems look like Open Clusters, their exact classification is, as of today, unclear. With these discoveries, we extend the parameter space occupied by star clusters to sizes and luminosities previously unexplored and demonstrate that rather than two distinct classes of Globular and Open clusters, there appears to be a continuity of objects, unmarked by a clear decision boundary.
The Pan-STARRS1 (PS1) $3pi$ survey is a comprehensive optical imaging survey of three quarters of the sky in the $grizy$ broad-band photometric filters. We present the methodology used in assembling the source classification and photometric redshift
The spatial variations of the velocity field of local stars provide direct evidence of Galactic differential rotation. The local divergence, shear, and vorticity of the velocity field---the traditional Oort constants---can be measured based purely on
Open clusters have long been used to gain insights into the structure, composition, and evolution of the Galaxy. With the large amount of stellar data available for many clusters in the Gaia era, new techniques must be developed for analyzing open cl
The Gaia mission has opened a new window into the internal kinematics of young star clusters at the sub-km/s level, with implications for our understanding of how star clusters form and evolve. We use a sample of 28 clusters and associations with age
We test the performance of the semi-analytic self-consistent Just-Jahrei{ss} disc model (JJ model) with the astrometric data from the Tycho-Gaia Astrometric Solution (TGAS) sub-catalogue of the first Gaia data release (Gaia DR1), as well as the radia