ﻻ يوجد ملخص باللغة العربية
In this work, we demonstrate the tunability of electronic properties of Si/SiO2 substrate by molecular and ionic surface modifications. The change in the electronic properties such as the work function (WF) and electron affinity (EA), were experimentally measured by contact potential difference (CPD) technique and theoretically supported by DFT calculations. We attribute these molecular electronic effects mainly to the variations of molecular and surface dipoles of the ionic and neutral species. We have previously showed that for the alkylhalide monolayers, changing the tail group from Cl to I decreased the work function of the substrate. Here we report on the opposite trend of WF changes, i.e. increase of the WF, obtained by using the anions of those halides from Cl$^{-}$ to I$^{-}$. This trend was observed on self-assembled alkylamonium halide (-NH3$^{+}$ X$^{-}$, where X$^{-}$=Cl$^{-}$, Br$^{-}$, I$^{-}$) monolayers modified substrates. The monolayer formation was supported by Ellipsometry measurements, X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy. Comparison of the theoretical and experimental data suggests that ionic surface dipole depends mainly on the polarizability and the position of the counter halide anion along with the organization and packaging of the layer. The described ionic modification can be easily used for facile tailoring and design of the electronic properties Si/SiO2 substrates for various device applications.
Feynman path-integral deep potential molecular dynamics (PI-DPMD) calculations have been employed to study both light (H$_2$O) and heavy water (D$_2$O) within the isothermal-isobaric ensemble. In particular, the deep neural network is trained based o
Room Temperature Ionic Liquids (RTILs) have attracted much of the attention of the scientific community in the past decade due the their novel and highly customizable properties. Nonetheless their high viscosities pose serious limitations to the use
Excellent two-dimensional electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose ReN$_2$ monolayer as a superior two-dimensional material for sodium-ion batteries. Total-energy optimization results in
We study the effect of quantum vibronic coupling on the electronic properties of carbon allotropes, including molecules and solids, by combining path integral first principles molecular dynamics (FPMD) with a colored noise thermostat. In addition to
Steric hindered frustrated Lewis pairs (FLPs) have been shown to activate hydrogen molecules, and their reactivity is strongly determined by the geometric parameters of the Lewis acid s and bases. A recent experimental study showed that ionic liquids