ﻻ يوجد ملخص باللغة العربية
In this paper, robustness of non-contiguous orthogonal frequency division multiplexing (NC-OFDM) transmissions is investigated and contrasted to OFDM transmissions for fending off signal exploitation attacks. In contrast to ODFM transmissions, NC-OFDM transmissions take place over a subset of active subcarriers to either avoid incumbent transmissions or for strategic considerations. A point-to-point communication system is considered in this paper in the presence of an adversary (exploiter) that aims to infer transmission parameters (e.g., the subset of active subcarriers and duration of the signal) using a deep neural network (DNN). This method has been proposed since the existing methods for exploitation, which are based on cyclostationary analysis, have been shown to have limited success in NC-OFDM systems. A good estimation of the transmission parameters allows the adversary to transmit spurious data and attack the legitimate receiver. Simulation results show that the DNN can infer the transmit parameters of OFDM signals with very good accuracy. However, NC-OFDM with fully random selection of active subcarriers makes it difficult for the adversary to exploit the waveform and thus for the receiver to be affected by the spurious data. Moreover, the more structured the set of active subcarriers selected by the transmitter is, the easier it is for the adversary to infer the transmission parameters and attack the receiver using a DNN.
In this paper, power allocation is examined for the coexistence of a radar and a communication system that employ multicarrier waveforms. We propose two designs for the considered spectrum sharing problem by maximizing the output signal-to-interferen
This paper presents channel-aware adversarial attacks against deep learning-based wireless signal classifiers. There is a transmitter that transmits signals with different modulation types. A deep neural network is used at each receiver to classify i
Internet-of-Things (IoT) devices that are limited in power and processing are susceptible to physical layer (PHY) spoofing (signal exploitation) attacks owing to their inability to implement a full-blown protocol stack for security. The overwhelming
We consider a wireless communication system that consists of a background emitter, a transmitter, and an adversary. The transmitter is equipped with a deep neural network (DNN) classifier for detecting the ongoing transmissions from the background em
This paper considers a secure multigroup multicast multiple-input single-output (MISO) communication system aided by an intelligent reflecting surface (IRS). Specifically, we aim to minimize the transmit power at the Alice via jointly optimizing the