ﻻ يوجد ملخص باللغة العربية
This paper considers a secure multigroup multicast multiple-input single-output (MISO) communication system aided by an intelligent reflecting surface (IRS). Specifically, we aim to minimize the transmit power at the Alice via jointly optimizing the transmit beamformer, AN vector and phase shifts at the IRS subject to the secrecy rate constraints as well as the unit modulus constraints of IRS phase shifts. However, the optimization problem is non-convex and directly solving it is intractable. To tackle the optimization problem, we first transform it into a semidefinite relaxation (SDR) problem, and then alternately update the transmit beamformer and AN matrix as well as the phase shifts at the IRS. In order to reduce the high computational complexity, we further propose a low-complexity algorithm based on second-order cone programming (SOCP). We decouple the optimization problem into two sub-problems and optimize the transmit beamformer, AN vector and the phase shifts alternately by solving two corresponding SOCP sub-problem. Simulation results show that the proposed SDR and SOCP schemes require half or less transmit power than the scheme without IRS, which demonstrates the advantages of introducing IRS and the effectiveness of the proposed methods.
In this paper, an intelligent reflecting surface (IRS) assisted spectrum sharing underlay cognitive radio (CR) wiretap channel (WTC) is studied, and we aim at enhancing the secrecy rate of secondary user in this channel subject to total power constra
In this paper, we investigate the design of robust and secure transmission in intelligent reflecting surface (IRS) aided wireless communication systems. In particular, a multi-antenna access point (AP) communicates with a single-antenna legitimate re
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). In this paper, we study the worst-case robust beamforming design for an IRS-aided multiuser
We analyze the outage probability of an intelligent reflecting surface (IRS)-assisted communication network. A tight upper bound on the outage probability is formulated based on the Chernoff inequality. Furthermore, through an exact asymptotic (a lar
In this letter, we study the secure communication problem in the unmanned aerial vehicle (UAV) enabled networks aided by an intelligent reflecting surface (IRS) from the physical-layer security perspective. Specifically, the IRS is deployed to assi