ﻻ يوجد ملخص باللغة العربية
It is well known that, in the context of general relativity, an unknown kind of matter that must violate the strong energy condition is required to explain the current accelerated phase of expansion of the Universe. This unknown component is called dark energy and is characterized by an equation of state parameter $w=p/rho<-1/3$. Thermodynamic stability requires that $3w-dln |w|/dln age0$ and positiveness of entropy that $wge-1$. In this paper we proof that we cannot obtain a differentiable function $w(a)$ to represent the dark energy that satisfies these conditions trough the entire history of the Universe.
We investigate the appropriateness of the use of different Lagrangians to describe various components of the cosmic energy budget, discussing the degeneracies between them in the absence of nonminimal couplings to gravity or other fields, and clarify
We study the imprints of an effective dark energy fluid in the large scale structure of the universe through the observed angular power spectrum of galaxies in the relativistic regime. We adopt the phenomenological approach that introduces two parame
We consider a cosmological scenario where the dark sector is described by two perfect fluids that interact through a velocity-dependent coupling. This coupling gives rise to an interaction in the dark sector driven by the relative velocity of the com
An extension to the Einstein-Cartan (EC) action is discussed in terms of cosmological solutions. The torsion incorporated in the EC Lagrangian is assumed to be totally anti-symmetric, and written by of a vector $S^mu$. Then this torsion model, compli
We investigate dynamical behavior of the equation of state of dark energy $w_{de}$ by employing the linear-spline method in the region of low redshifts from observational data (SnIa, BAO, CMB and 12 $H(z)$ data). The redshift is binned and $w_{de}$ i