ترغب بنشر مسار تعليمي؟ اضغط هنا

AdaShift: Decorrelation and Convergence of Adaptive Learning Rate Methods

349   0   0.0 ( 0 )
 نشر من قبل Zhiming Zhou
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Adam is shown not being able to converge to the optimal solution in certain cases. Researchers recently propose several algorithms to avoid the issue of non-convergence of Adam, but their efficiency turns out to be unsatisfactory in practice. In this paper, we provide new insight into the non-convergence issue of Adam as well as other adaptive learning rate methods. We argue that there exists an inappropriate correlation between gradient $g_t$ and the second-moment term $v_t$ in Adam ($t$ is the timestep), which results in that a large gradient is likely to have small step size while a small gradient may have a large step size. We demonstrate that such biased step sizes are the fundamental cause of non-convergence of Adam, and we further prove that decorrelating $v_t$ and $g_t$ will lead to unbiased step size for each gradient, thus solving the non-convergence problem of Adam. Finally, we propose AdaShift, a novel adaptive learning rate method that decorrelates $v_t$ and $g_t$ by temporal shifting, i.e., using temporally shifted gradient $g_{t-n}$ to calculate $v_t$. The experiment results demonstrate that AdaShift is able to address the non-convergence issue of Adam, while still maintaining a competitive performance with Adam in terms of both training speed and generalization.



قيم البحث

اقرأ أيضاً

Adaptive Momentum Estimation (Adam), which combines Adaptive Learning Rate and Momentum, is the most popular stochastic optimizer for accelerating the training of deep neural networks. However, empirically Adam often generalizes worse than Stochastic Gradient Descent (SGD). We unveil the mystery of this behavior based on the diffusion theoretical framework. Specifically, we disentangle the effects of Adaptive Learning Rate and Momentum of the Adam dynamics on saddle-point escaping and minima selection. We prove that Adaptive Learning Rate can escape saddle points efficiently, but cannot select flat minima as SGD does. In contrast, Momentum provides a drift effect to help the training process pass through saddle points, and almost does not affect flat minima selection. This theoretically explains why SGD (with Momentum) generalizes better, while Adam generalizes worse but converges faster. Furthermore, motivated by the analysis, we design a novel adaptive optimization framework named Adaptive Inertia, which uses parameter-wise adaptive inertia to accelerate the training and provably favors flat minima as well as SGD. Our extensive experiments demonstrate that the proposed adaptive inertia method can generalize significantly better than SGD and conventional adaptive gradient methods.
AdaBelief, one of the current best optimizers, demonstrates superior generalization ability compared to the popular Adam algorithm by viewing the exponential moving average of observed gradients. AdaBelief is theoretically appealing in that it has a data-dependent $O(sqrt{T})$ regret bound when objective functions are convex, where $T$ is a time horizon. It remains however an open problem whether the convergence rate can be further improved without sacrificing its generalization ability. %on how to exploit strong convexity to further improve the convergence rate of AdaBelief. To this end, we make a first attempt in this work and design a novel optimization algorithm called FastAdaBelief that aims to exploit its strong convexity in order to achieve an even faster convergence rate. In particular, by adjusting the step size that better considers strong convexity and prevents fluctuation, our proposed FastAdaBelief demonstrates excellent generalization ability as well as superior convergence. As an important theoretical contribution, we prove that FastAdaBelief attains a data-dependant $O(log T)$ regret bound, which is substantially lower than AdaBelief. On the empirical side, we validate our theoretical analysis with extensive experiments in both scenarios of strong and non-strong convexity on three popular baseline models. Experimental results are very encouraging: FastAdaBelief converges the quickest in comparison to all mainstream algorithms while maintaining an excellent generalization ability, in cases of both strong or non-strong convexity. FastAdaBelief is thus posited as a new benchmark model for the research community.
Most optimizers including stochastic gradient descent (SGD) and its adaptive gradient derivatives face the same problem where an effective learning rate during the training is vastly different. A learning rate scheduling, mostly tuned by hand, is usu ally employed in practice. In this paper, we propose CProp, a gradient scaling method, which acts as a second-level learning rate adapting throughout the training process based on cues from past gradient conformity. When the past gradients agree on direction, CProp keeps the original learning rate. On the contrary, if the gradients do not agree on direction, CProp scales down the gradient proportionally to its uncertainty. Since it works by scaling, it could apply to any existing optimizer extending its learning rate scheduling capability. We put CProp to a series of tests showing significant gain in training speed on both SGD and adaptive gradient method like Adam. Codes are available at https://github.com/phizaz/cprop .
Adaptive gradient methods including Adam, AdaGrad, and their variants have been very successful for training deep learning models, such as neural networks. Meanwhile, given the need for distributed computing, distributed optimization algorithms are r apidly becoming a focal point. With the growth of computing power and the need for using machine learning models on mobile devices, the communication cost of distributed training algorithms needs careful consideration. In this paper, we introduce novel convergent decentralized adaptive gradient methods and rigorously incorporate adaptive gradient methods into decentralized training procedures. Specifically, we propose a general algorithmic framework that can convert existing adaptive gradient methods to their decentralized counterparts. In addition, we thoroughly analyze the convergence behavior of the proposed algorithmic framework and show that if a given adaptive gradient method converges, under some specific conditions, then its decentralized counterpart is also convergent. We illustrate the benefit of our generic decentralized framework on a prototype method, i.e., AMSGrad, both theoretically and numerically.
We build a theoretical framework for designing and understanding practical meta-learning methods that integrates sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction alg orithms. Our approach enables the task-similarity to be learned adaptively, provides sharper transfer-risk bounds in the setting of statistical learning-to-learn, and leads to straightforward derivations of average-case regret bounds for efficient algorithms in settings where the task-environment changes dynamically or the tasks share a certain geometric structure. We use our theory to modify several popular meta-learning algorithms and improve their meta-test-time performance on standard problems in few-shot learning and federated learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا