ﻻ يوجد ملخص باللغة العربية
In recent years, exploring the possible use of separable states as resource for achieving quantum information processing(QIP) tasks has been gaining increasing significance. In this context, a particularly important demonstration has been that non-vanishing discord is the necessary condition for the separable states to be used as resource for remotely preparing any arbitrary pure target state [Nature Physics $8$, $666$ $(2012)$]. The present work stems from our observation that not only resource states with same discord can imply different efficiencies (in terms of average fidelity) of the remote state preparation (RSP) protocol, but also states with higher discord can imply lower RSP efficiency. This, therefore, necessitates identification of the relevant feature of quantum correlations which can appropriately quantify effectiveness of the resource state for the RSP protocol. To this end, for the two-qubit Bell-diagonal states, we show that an appropriate measure of simultaneous correlations in three mutually unbiased bases can serve to quantify usefulness of the resource for the RSP task using entangled as well as separable states, including non-discordant states as resource. In particular, it is revealed that zero-discord states having such non-vanishing measure can be useful for remotely preparing a subset of pure target states. Thus, this work shows that, using separable states, an effective resource for QIP tasks such as RSP can be provided by simultaneous correlations in mutually unbiased bases.
Quantum entanglement is widely recognized as one of the key resources for the advantages of quantum information processing, including universal quantum computation, reduction of communication complexity or secret key distribution. However, computatio
Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contrib
Quantum information theory has revolutionized the way in which information is processed using quantum resources such as entangled states, local operations and classical communications. Two important protocols in quantum communications are quantum tel
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of on
We consider a scenario of remote state preparation of qubits where a single copy of an entangled state is shared between Alice and several Bobs who sequentially perform unsharp single-particle measurements. We show that a substantial number of Bobs c