ﻻ يوجد ملخص باللغة العربية
Quantum entanglement is widely recognized as one of the key resources for the advantages of quantum information processing, including universal quantum computation, reduction of communication complexity or secret key distribution. However, computational models have been discovered, which consume very little or no entanglement and still can efficiently solve certain problems thought to be classically intractable. The existence of these models suggests that separable or weakly entangled states could be extremely useful tools for quantum information processing as they are much easier to prepare and control even in dissipative environments. It has been proposed that a requirement for useful quantum states is the generation of so-called quantum discord, a measure of non-classical correlations that includes entanglement as a subset. Although a link between quantum discord and few quantum information tasks has been studied, its role in computation speed-up is still open and its operational interpretation remains restricted to only few somewhat contrived situations. Here we show that quantum discord is the optimal resource for the remote quantum state preparation, a variant of the quantum teleportation protocol. Using photonic quantum systems, we explicitly show that the geometric measure of quantum discord is related to the fidelity of this task, which provides an operational meaning. Moreover, we demonstrate that separable states with non-zero quantum discord can outperform entangled states. Therefore, the role of quantum discord might provide fundamental insights for resource-efficient quantum information processing.
Quantum discord and quantum entanglement are resources in some quantum information processing (QIP) models. However, in recent years, the evidence that separable states or classically correlated states can also accomplish QIP is demonstrated. It prov
In recent years, exploring the possible use of separable states as resource for achieving quantum information processing(QIP) tasks has been gaining increasing significance. In this context, a particularly important demonstration has been that non-va
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of on
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired a
Quantum information theory has revolutionized the way in which information is processed using quantum resources such as entangled states, local operations and classical communications. Two important protocols in quantum communications are quantum tel