ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of hubs in the synergistic spread of behavior

140   0   0.0 ( 0 )
 نشر من قبل Yongjoo Baek
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spread of behavior in a society has two major features: the synergy of multiple spreaders and the dominance of hubs. While strong synergy is known to induce mixed-order transitions (MOTs) at percolation, the effects of hubs on the phenomena are yet to be clarified. By analytically solving the generalized epidemic process on random scale-free networks with the power-law degree distribution $p_k sim k^{-alpha}$, we clarify how the dominance of hubs in social networks affects the conditions for MOTs. Our results show that, for $alpha < 4$, an abundance of hubs drive MOTs, even if a synergistic spreading event requires an arbitrarily large number of adjacent spreaders. In particular, for $2 < alpha < 3$, we find that a global cascade is possible even when only synergistic spreading events are allowed. These transition properties are substantially different from those of cooperative contagions, which are another class of synergistic cascading processes exhibiting MOTs.

قيم البحث

اقرأ أيضاً

We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous m ixing approaches usually used. Our second aim is to look at the role of social deprivation, again using networks as our basis, in the spread of this epidemic. We choose the city of Kolkata as a case study, but assert that the insights so obtained are applicable to a wide variety of urban environments which are densely populated and where social inequalities are rampant. Our predictions of hotspots are found to be in good agreement with those currently being identifed empirically as containment zones and provide a useful guide for identifying potential areas of concern.
Most models of epidemic spread, including many designed specifically for COVID-19, implicitly assume that social networks are undirected, i.e., that the infection is equally likely to spread in either direction whenever a contact occurs. In particula r, this assumption implies that the individuals most likely to spread the disease are also the most likely to receive it from others. Here, we review results from the theory of random directed graphs which show that many important quantities, including the reproductive number and the epidemic size, depend sensitively on the joint distribution of in- and out-degrees (risk and spread), including their heterogeneity and the correlation between them. By considering joint distributions of various kinds we elucidate why some types of heterogeneity cause a deviation from the standard Kermack-McKendrick analysis of SIR models, i.e., so called mass-action models where contacts are homogeneous and random, and some do not. We also show that some structured SIR models informed by complex contact patterns among types of individuals (age or activity) are simply mixtures of Poisson processes and tend not to deviate significantly from the simplest mass-action model. Finally, we point out some possible policy implications of this directed structure, both for contact tracing strategy and for interventions designed to prevent superspreading events. In particular, directed networks have a forward and backward version of the classic friendship paradox -- forward links tend to lead to individuals with high risk, while backward links lead to individuals with high spread -- such that a combination of both forward and backward contact tracing is necessary to find superspreading events and prevent future cascades of infection.
Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or tender, usually submit their most important work to prestigious journals which receives higher citations than the ordinary. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two folds. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive ageing mechanism. The nodes weight is drawn from the distribution of impact factors of journals and the ageing transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behaviour. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws.
In this work we study a simple compartmental model for drinking behavior evolution. The population is divided in 3 compartments regarding their alcohol consumption, namely Susceptible individuals $S$ (nonconsumers), Moderate drinkers $M$ and Risk dri nkers $R$. The transitions among those states are ruled by probabilities. Despite the simplicity of the model, we observed the occurrence of two distinct nonequilibrium phase transitions to absorbing states. One of these states is composed only by Susceptible individuals $S$, with no drinkers ($M=R=0$). On the other hand, the other absorbing state is composed only by Risk drinkers $R$ ($S=M=0$). Between these two steady states, we have the coexistence of the three subpopulations $S$, $M$ and $R$. Comparison with abusive alcohol consumption data for Brazil shows a good agreement between the models results and the database.
In this work we study a modified Susceptible-Infected-Susceptible (SIS) model in which the infection rate $lambda$ decays exponentially with the number of reinfections $n$, saturating after $n=l$. We find a critical decaying rate $epsilon_{c}(l)$ abo ve which a finite fraction of the population becomes permanently infected. From the mean-field solution and computer simulations on hypercubic lattices we find evidences that the upper critical dimension is 6 like in the SIR model, which can be mapped in ordinary percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا