ﻻ يوجد ملخص باللغة العربية
The spread of behavior in a society has two major features: the synergy of multiple spreaders and the dominance of hubs. While strong synergy is known to induce mixed-order transitions (MOTs) at percolation, the effects of hubs on the phenomena are yet to be clarified. By analytically solving the generalized epidemic process on random scale-free networks with the power-law degree distribution $p_k sim k^{-alpha}$, we clarify how the dominance of hubs in social networks affects the conditions for MOTs. Our results show that, for $alpha < 4$, an abundance of hubs drive MOTs, even if a synergistic spreading event requires an arbitrarily large number of adjacent spreaders. In particular, for $2 < alpha < 3$, we find that a global cascade is possible even when only synergistic spreading events are allowed. These transition properties are substantially different from those of cooperative contagions, which are another class of synergistic cascading processes exhibiting MOTs.
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous m
Most models of epidemic spread, including many designed specifically for COVID-19, implicitly assume that social networks are undirected, i.e., that the infection is equally likely to spread in either direction whenever a contact occurs. In particula
Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or tender, usually submit their most important work to prestigious journals which receives
In this work we study a simple compartmental model for drinking behavior evolution. The population is divided in 3 compartments regarding their alcohol consumption, namely Susceptible individuals $S$ (nonconsumers), Moderate drinkers $M$ and Risk dri
In this work we study a modified Susceptible-Infected-Susceptible (SIS) model in which the infection rate $lambda$ decays exponentially with the number of reinfections $n$, saturating after $n=l$. We find a critical decaying rate $epsilon_{c}(l)$ abo