ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering long spin coherence times of spin-orbit systems

72   0   0.0 ( 0 )
 نشر من قبل Takashi Kobayashi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit coupling fundamentally alters spin qubits, opening pathways to improve the scalability of quantum computers via long distance coupling mediated by electric fields, photons, or phonons. It also allows for new engineered hybrid and topological quantum systems. However, spin qubits with intrinsic spin-orbit coupling are not yet viable for quantum technologies due to their short ($sim1~mu$s) coherence times $T_2$, while qubits with long $T_2$ have weak spin-orbit coupling making qubit coupling short-ranged and challenging for scale-up. Here we show that an intrinsic spin-orbit coupled generalised spin with total angular momentum $J=tfrac{3}{2}$, which is defined by holes bound to boron dopant atoms in strained $^{28}mathrm{Si}$, has $T_2$ rivalling the electron spins of donors and quantum dots in $^{28}mathrm{Si}$. Using pulsed electron paramagnetic resonance, we obtain $0.9~mathrm{ms}$ Hahn-echo and $9~mathrm{ms}$ dynamical decoupling $T_2$ times, where strain plays a key role to reduce spin-lattice relaxation and the longitudinal electric coupling responsible for decoherence induced by electric field noise. Our analysis shows that transverse electric dipole can be exploited for electric manipulation and qubit coupling while maintaining a weak longitudinal coupling, a feature of $J=tfrac{3}{2}$ atomic systems with a strain engineered quadrupole degree of freedom. These results establish single-atom hole spins in silicon with quantised total angular momentum, not spin, as a highly coherent platform with tuneable intrinsic spin-orbit coupling advantageous to build artificial quantum systems and couple qubits over long distances.

قيم البحث

اقرأ أيضاً

We study the coherence times and perform manipulations on the lowest-energy states of trivalent cerium ion in calcium tungstate crystal. We find the phase memory time reaching 14.2 ${mu}$s and the time of coherent manipulations reaching 0.3 ${mu}$s i n the low-temperature limit, the latter can potentially be elongated by using the rotation angle and off-resonance error correction schemes.
179 - T. Korn , M. Kugler , M. Griesbeck 2009
For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spi ns in III-V-based quantum dots were discussed as alternatives to electron spins, since the hole spin, in contrast to the electron spin, is not affected by contact hyperfine interaction with the nuclear spins. Here, we report a breakthrough in the spin coherence times of hole ensembles, confined in so called natural quantum dots, in narrow GaAs/AlGaAs quantum wells at temperatures below 500 mK. Consistently, time-resolved Faraday rotation and resonant spin amplification techniques deliver hole-spin coherence times, which approach in the low magnetic field limit values above 70 ns. The optical initialisation of the hole spin polarisation, as well as the interconnected electron and hole spin dynamics in our samples are well reproduced using a rate equation model.
We map electron spin dynamics from time to space in quantum wires with spatially uniform and oscillating Rashba spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magn etic fields. We show that by periodically modulating the spin-orbit coupling along the quantum wire axis, it is possible to create the spatial analogue of spin resonance, without the need for any real magnetic fields. The mapping of time-dependent operations onto a spatial axis suggests a new mode for quantum information processing in which gate operations are encoded into the band structure of the material. We describe a realization of such materials within nanowires at the interface of LaAlO3/SrTiO3 heterostructures.
Strong magnetic field gradients can produce a synthetic spin-orbit interaction that allows for high fidelity electrical control of single electron spins. We investigate how a field gradient impacts the spin relaxation time T_1 by measuring T_1 as a f unction of magnetic field B in silicon. The interplay of charge noise, magnetic field gradients, phonons, and conduction band valleys leads to a maximum relaxation time of 160 ms at low field, a strong spin-valley relaxation hotspot at intermediate fields, and a B^4 scaling at high fields. T_1 is found to decrease with lattice temperature T_lat as well as with added electrical noise. In comparison, samples without micromagnets have a significantly longer T_1. Optimization of the micromagnet design, combined with reductions in charge noise and electron temperature, may further extend T_1 in devices with large magnetic field gradients.
73 - Li-Ping Yang , C. P. Sun 2013
The spin-orbit coupling (SOC) can mediate electric-dipole spin resonance (EDSR) in an a.c. electric field. In this letter, the EDSR is essentially understood as an spin precession under an effective a.c. magnetic field induced by the SOC in the refer ence frame, which is exactly following the classical trajectory of the electron and obtained by applying a quantum linear coordinate transformation. With this observation for one-dimensional (1D) case, we find a upper limit for the spin-flipping speed in the EDSR-based control of spin, which is given by the accessible data from the current experiment. For two-dimensional case, the azimuthal dependence of the effective magnetic field can be used to measure the ratio of the Rashba and Dresselhause SOC strengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا