ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect control of spin precession by electric field via spin-orbit coupling

131   0   0.0 ( 0 )
 نشر من قبل Yang Li-Ping
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin-orbit coupling (SOC) can mediate electric-dipole spin resonance (EDSR) in an a.c. electric field. In this letter, the EDSR is essentially understood as an spin precession under an effective a.c. magnetic field induced by the SOC in the reference frame, which is exactly following the classical trajectory of the electron and obtained by applying a quantum linear coordinate transformation. With this observation for one-dimensional (1D) case, we find a upper limit for the spin-flipping speed in the EDSR-based control of spin, which is given by the accessible data from the current experiment. For two-dimensional case, the azimuthal dependence of the effective magnetic field can be used to measure the ratio of the Rashba and Dresselhause SOC strengths.



قيم البحث

اقرأ أيضاً

The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has be en observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession. Here, by manipulating the anisotropic spin-orbit coupling in bilayer graphene by the proximity effect to WSe$_2$, we achieve coherent spin precession in the absence of an external magnetic field, even in the diffusive regime. Remarkably, the sign of the precessing spin polarization can be tuned by a back gate voltage and by a drift current. Our realization of a spin field-effect transistor at room temperature is a cornerstone for the implementation of energy-efficient spin-based logic.
98 - Zhi-Hai Liu , Rui Li , Xuedong Hu 2018
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mech anisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large $g$-factor of strong SOC materials such as InSb.
We propose and analyze a novel flopping-mode mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole moment compared to the conventional single dot spin resonance configuration. We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the double to the single dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic field gradient, which gives rise to a second order sweet spot with reduced sensitivity to charge fluctuations.
We map electron spin dynamics from time to space in quantum wires with spatially uniform and oscillating Rashba spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magn etic fields. We show that by periodically modulating the spin-orbit coupling along the quantum wire axis, it is possible to create the spatial analogue of spin resonance, without the need for any real magnetic fields. The mapping of time-dependent operations onto a spatial axis suggests a new mode for quantum information processing in which gate operations are encoded into the band structure of the material. We describe a realization of such materials within nanowires at the interface of LaAlO3/SrTiO3 heterostructures.
Strong magnetic field gradients can produce a synthetic spin-orbit interaction that allows for high fidelity electrical control of single electron spins. We investigate how a field gradient impacts the spin relaxation time T_1 by measuring T_1 as a f unction of magnetic field B in silicon. The interplay of charge noise, magnetic field gradients, phonons, and conduction band valleys leads to a maximum relaxation time of 160 ms at low field, a strong spin-valley relaxation hotspot at intermediate fields, and a B^4 scaling at high fields. T_1 is found to decrease with lattice temperature T_lat as well as with added electrical noise. In comparison, samples without micromagnets have a significantly longer T_1. Optimization of the micromagnet design, combined with reductions in charge noise and electron temperature, may further extend T_1 in devices with large magnetic field gradients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا