ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Growth and Electrical Properties of VO2 on LSAT (111) substrate

395   0   0.0 ( 0 )
 نشر من قبل Yang Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the epitaxial growth and the electrical properties, especially the metal-to-insulator transition (MIT), of vanadium dioxide (VO2) thin films synthesized on LSAT (111) ([LaAlO3]0.3[Sr2AlTaO6]0.7) substrates by pulsed laser deposition. X-ray diffraction studies show that the epitaxial relationship between the VO2 thin films and LSAT substrate is given as VO2(020)||LSAT(111) and VO2[001]||LSAT[11-2]. We observed a sharp four orders of magnitude change in the longitudinal resistance for the VO2 thin films around the transition temperature. We also measured distinct Raman spectra below and above the transition point indicating a concomitant structural transition between the insulator and metallic phases, in agreement with past investigations.



قيم البحث

اقرأ أيضاً

The growth and characterization of epitaxial Co3O4(111) films grown by oxygen plasma-assisted molecular beam epitaxy on single crystalline a-Al2O3(0001) is reported. The Co3O4(111) grows single crystalline with the epitaxial relation Co3O4(111)[-12-1 ]||a-Al2O3(0001)[10-10], as determined from in situ electron diffraction. Film stoichiometry is confirmed by x-ray photoelectron spectroscopy, while ex situ x-ray diffraction measurements show that the Co3O4 films are fully relaxed. Post-growth annealing induces significant modifications in the film morphology, including a sharper Co3O4/a-Al2O3 interface and improved surface crystallinity, as shown by x-ray reflectometry, atomic force microscopy and electron diffraction measurements. Despite being polar, the surface of both as-grown and annealed Co3O4(111) films are (1 * 1), which can be explained in terms of inversion in the surface spinel structure.
170 - E. Radue , E. Crisman , L. Wang 2012
In this paper we used Raman spectroscopy to investigate the optical properties of vanadium dioxide (VO2) thin films during the thermally induced insulating to metallic phase transition. We observed a significant difference in transition temperature i n similar VO2 films grown on quartz and sapphire substrates: the film grown on quartz displayed the phase transition at a lower temperature (Tc=50C) compared a film grown on sapphire (Tc=68C). We also investigated differences in the detected Raman signal for different wavelengths and polarizations of the excitation laser. We found that for either substrate, a longer wavelength (in our case 785 nm) yielded the clearest VO2 Raman spectra, with no polarization dependence.
73 - Haoyu Dong , Le Lei , Shuya Xing 2021
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic elect ronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film growth is (110)-oriented, a nd several in-plane epitaxial domains are observed. The temperature dependence of the electrical resistivity shows a power law with an exponent of 7/2 at low temperatures. Investigation of the bulk magnetic properties reveals an extrapolated saturation magnetization of 5.0 mu_B/fu at 0 K. The films on Al_2O_3 show an in-plane uniaxial anisotropy, while the epitaxial films are magnetically isotropic in the plane. Measurements of the X-ray magnetic circular dichroism of the films allowed us to determine element specific magnetic moments. Finally we have measured the spin polarization at the surface region by spin-resolved near-threshold photoemission and found it strongly reduced in contrast to the expected bulk value of 100%. Possible reasons for the reduced magnetization are discussed.
A major challenge for ferroelectric devices is the depolarization field, which competes with and often destroys long-range polar order in the limit of ultrathin films. Recent theoretical predictions suggest a new class of materials, termed hyperferro electics, that should be robust against the depolarization field and enable ferroelectricity down to the monolayer limit. Here we demonstrate the epitaxial growth of hexagonal LiZnSb, one of the hyperferroelectric candidate materials, by molecular-beam epitaxy on GaSb (111)B substrates. Due to the high volatility of all three atomic species, we find that LiZnSb can be grown in an adsorption-controlled window, using an excess zinc flux. Within this window, the desired polar hexagonal phase is stabilized with respect to a competing cubic polymorph, as revealed by X-ray diffraction and transmission electron microscopy measurements. First-principles calculations show that for moderate amounts of epitaxial strain and moderate concentrations of Li vacancies, the cubic LiZnSb phase is lower in formation energy than the hexagonal phase, but only by a few meV per formula unit. Therefore we suggest that kinetics plays a role in stabilizing the desired hexagonal phase at low temperatures. Our results provide a path towards experimentally demonstrating ferroelectricity and hyperferroelectricity in a new class of ternary intermetallic compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا