ﻻ يوجد ملخص باللغة العربية
Automatic algorithms attempt to provide approximate solutions that differ from exact solutions by no more than a user-specified error tolerance. This paper describes an automatic, adaptive algorithm for approximating the solution to a general linear problem on Hilbert spaces. The algorithm employs continuous linear functionals of the input function, specifically Fourier coefficients. We assume that the Fourier coefficients of the solution decay sufficiently fast, but do not require the decay rate to be known a priori. We also assume that the Fourier coefficients decay steadily, although not necessarily monotonically. Under these assumptions, our adaptive algorithm is shown to produce an approximate solution satisfying the desired error tolerance, without prior knowledge of the norm of the function to be approximated. Moreover, the computational cost of our algorithm is shown to be essentially no worse than that of the optimal algorithm. We provide a numerical experiment to illustrate our algorithm.
We consider the problem of constructing Bayesian based confidence sets for linear functionals in the inverse Gaussian white noise model. We work with a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the data-driven (slight
We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on t
Based on the geometric {it Triangle Algorithm} for testing membership of a point in a convex set, we present a novel iterative algorithm for testing the solvability of a real linear system $Ax=b$, where $A$ is an $m times n$ matrix of arbitrary rank.
The analysis of linear ill-posed problems often is carried out in function spaces using tools from functional analysis. However, the numerical solution of these problems typically is computed by first discretizing the problem and then applying tools
We propose a deterministic Kaczmarz method for solving linear systems $Ax=b$ with $A$ nonsingular. Instead of using orthogonal projections, we use reflections in the original Kaczmarz iterative method. This generates a series of points on an $n$-sphe