ترغب بنشر مسار تعليمي؟ اضغط هنا

Conserving approximations in cavity quantum electrodynamics: Implications for density functional theory of electron-photon systems

59   0   0.0 ( 0 )
 نشر من قبل Ilya V. Tokatly
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. V. Tokatly




اسأل ChatGPT حول البحث

By analyzing the many-body problem for non-relativistic electrons strongly coupled to photon modes of a microcavity I derive the exact momentum/force balance equation for cavity quantum electrodynamics. Implications of this equation for the electron self-energy and the exchange-correlation potential of quantum electrodynamic time-dependent density functional (QED-TDDFT) are discussed. In particular I generalize the concept of $Phi$-derivability to construct approximations which ensure the correct momentum balance. It is shown that a recently proposed optimized effective potential approximation for QED-TDDFT is conserving and its possible improvements are discussed.


قيم البحث

اقرأ أيضاً

138 - Julien Toulouse 2021
A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction is developed. This effective QED theory properly includes the effects of va cuum polarization through the creation of electron-positron pairs but does not include explicitly the photon degrees of freedom. It is thus a more tractable alternative to full QED for atomic and molecular calculations. Using the constrained-search formalism, a Kohn-Sham scheme is formulated in a quite similar way to non-relativistic density-functional theory, and some exact properties of the involved density functionals are studied, namely charge-conjugation symmetry and uniform coordinate scaling. The usual no-pair Kohn-Sham scheme is obtained as a well-defined approximation to this relativistic density-functional theory.
We report on simulations of the degree of polarization entanglement of photon pairs simultaneously emitted from a quantum dot-cavity system that demand revisiting the role of phonons. Since coherence is a fundamental precondition for entanglement and phonons are known to be a major source of decoherence, it seems unavoidable that phonons can only degrade entanglement. In contrast, we demonstrate that phonons can cause a degree of entanglement that even surpasses the corresponding value for the phonon-free case. In particular, we consider the situation of comparatively small biexciton binding energies and either finite exciton or cavity mode splitting. In both cases, combinations of the splitting and the dot-cavity coupling strength are found where the entanglement exhibits a nonmonotonic temperature dependence which enables entanglement above the phonon-free level in a finite parameter range. This unusual behavior can be explained by phonon-induced renormalizations of the dot-cavity coupling $g$ in combination with a nonmonotonic dependence of the entanglement on $g$ that is present already without phonons.
We consider a superconducting microwave cavity capacitively coupled to both a quantum conductor and its electronic reservoirs. We analyze in details how the measurements of the cavity microwave field, which are related to the electronic charge suscep tibility, can be used to extract information on the transport properties of the quantum conductor. We show that the asymmetry of the capacitive couplings between the electronic reservoirs and the cavity plays a crucial role in relating optical measurements to transport properties. For asymmetric capacitive couplings, photonic measurements can be used to probe the finite low frequency admittance of the quantum conductor, the real part of which being related to the differential conductance. In particular, when the quantum dot is far from resonance, the charge susceptibility is directly proportional to the admittance for a large range of frequencies and voltages. However, when the quantum conductor is near a resonance, such a relation generally holds only at low frequency and for equal tunnel coupling or low voltage. Beyond this low-energy near equilibrium regime, the charge susceptibility and thus the optical transmission offers new insights on the quantum conductors since the optical observables are not directly connected to transport quantities. For symmetric lead capacitive couplings, we show that the optical measurements can be used to reveal the Korringa-Shiba relation, connecting the reactive to the dissipative part of the susceptibility, at low frequency and low bias.
Understanding the interaction between cavity photons and electronic nanocircuits is crucial for the development of Mesoscopic Quantum Electrodynamics (QED). One has to combine ingredients from atomic Cavity QED, like orbital degrees of freedom, with tunneling physics and strong cavity field inhomogeneities, specific to superconducting circuit QED. It is therefore necessary to introduce a formalism which bridges between these two domains. We develop a general method based on a photonic pseudo-potential to describe the electric coupling between electrons in a nanocircuit and cavity photons. In this picture, photons can induce simultaneously orbital energy shifts, tunneling, and local orbital transitions. We study in details the elementary example of a single quantum dot with a single normal metal reservoir, coupled to a cavity. Photon-induced tunneling terms lead to a non-universal relation between the cavity frequency pull and the damping pull. Our formalism can also be applied to multi quantum dot circuits, molecular circuits, quantum point contacts, metallic tunnel junctions, and superconducting nanostructures enclosing Andreev bound states or Majorana bound states, for instance.
We investigate the exciton complexes photoluminescence, dynamics and photon statistics in the concurrent strong weak coupling regime in our unique site controlled singular inverted pyramidal InGaAs/GaAs quantum dots photonic crystal cavities platform . Different from a clear boundary between strong and weak QD cavity coupling, we demonstrate the strong and weak coupling can coexist dynamically, as a form of intermediate regime mediated by phonon scattering. The detuning dependent microphotoluminescence spectrum reveals concurrence of exciton cavity polariton mode avoided crossing, as a signature of Rabi doublet of the strong coupled system, the blue shifting of coupled exciton cavity mode energy near zero detuning ascribed to the formation of collective states mediated by phonon assisted coupling, and their partial out of synchronization linewidth narrowing linked to their mixed behavior. By detailing the optical features of strongly confined exciton-photon complexes and the quantum statistics of coupled cavity photons, we reveal the dynamics and antibunching/bunching photon statistical signatures of the concurrent strong weak intermediate coupled system at near zero-detuning. This study suggests our device has potential for new and subtle cavity quantum electrodynamical phenomena, cavity enhanced indistinguishable single photon generation, and cluster state generation via the exciton-photon complexes for quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا