ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative decays of the heavy tensor mesons in light cone QCD sum rules

134   0   0.0 ( 0 )
 نشر من قبل Mustafa Savci
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف T. M. Aliev




اسأل ChatGPT حول البحث

The transition form factors of the radiative decays of the heavy tensor mesons to heavy pseudoscalar and heavy vector mesons are calculated in the framework of the light cone QCD sum rules method at the point $Q^2=0$. Using the obtained values of the transition form factors at the point $Q^2=0$ the corresponding decay widths are estimated. The results show that the radiative decays of the heavy--light tensor mesons can be measurable in the future planned experiments at LHCb.



قيم البحث

اقرأ أيضاً

In this article, the tensor-vector-pseudoscalar type of vertex is analyzed with the QCD sum rules and the local-QCD sum rules. Correspondingly, the hadronic coupling constants of D2*(2460), Ds2*(2573), B2*(5747) and Bs2*(5840), and their decay widths are calculated. The results indicate that the QCD sum rules and the local-QCD sum rules give the consistent descriptions. Finally, the full widths of these 4 tensor mesons are discussed in detail.
The magnetic moments of heavy $Xi_{Q}$ baryons containing a single charm or bottom quark are calculated in the framework of light cone QCD sum rules method. A comparison of our results with the predictions of the quark models is presented.
114 - T. M. Aliev , M. Savc{i} 2016
The strong coupling constants of the $pi$ and $K$ mesons with negative parity octet baryons are estimated within the light cone QCD sum rules. It is observed that all strong coupling constants, similar to the case for the positive parity baryons, can be described in terms of three invariant functions, where two of them correspond to the well known $F$ and $D$ couplings in the $SU(3)_f$ symmetry, and the third function describes the $SU(3)_f$ symmetry violating effects. We compare our predictions on the strong coupling constants of pseudoscalar mesons of negative parity baryons with those corresponding to the strong coupling constants for the positive parity baryons.
We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the $Lambda_c,Sigma_c$ and $Lambda_b$ -baryons are interpolated by three-quark currents and the nucleon distr ibution amplitudes are used. To eliminate the contributions of negative parity heavy baryons, we combine the sum rules obtained from different kinematical structures. The results are then less sensitive to the choice of the interpolating current. We predict the $Lambda_{b}to p$ form factor and calculate the widths of the $Lambda_{b}to pell u_l$ and $Lambda_{b}to p pi$ decays. Furthermore, we consider double dispersion relations for the same correlation functions and derive the light-cone sum rules for the $Lambda_cND^{(*)}$ and $Sigma_cND^{(*)}$ strong couplings. Their predicted values can be used in the models of charm production in $pbar{p}$ collisions.
The magnetic moments of heavy sextet $J^P = {1over 2}^+$ baryons are calculated in framework of the light cone QCD sum rules method. Linearly independent relations among the magnetic moments of these baryons are obtained. The results for the magnetic moments of heavy baryons obtained in this work are compared with the predictions of the other approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا