ﻻ يوجد ملخص باللغة العربية
The strong coupling constants of the $pi$ and $K$ mesons with negative parity octet baryons are estimated within the light cone QCD sum rules. It is observed that all strong coupling constants, similar to the case for the positive parity baryons, can be described in terms of three invariant functions, where two of them correspond to the well known $F$ and $D$ couplings in the $SU(3)_f$ symmetry, and the third function describes the $SU(3)_f$ symmetry violating effects. We compare our predictions on the strong coupling constants of pseudoscalar mesons of negative parity baryons with those corresponding to the strong coupling constants for the positive parity baryons.
We estimate strong coupling constant between the negative parity nucleons with $pi$ meson within the light cone QCD sum rules. A method for eliminating the unwanted contributions coming from the nucleon--nucleon and nucleon--negative parity nucleon t
Using the most general form of the interpolating current of the baryons, the strong coupling constants of the light vector mesons with the octet baryons are calculated within the light cone QCD sum rules. The SU(3)_f symmetry breaking effects are tak
We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the $Lambda_c,Sigma_c$ and $Lambda_b$ -baryons are interpolated by three-quark currents and the nucleon distr
The magnetic moments of heavy $Xi_{Q}$ baryons containing a single charm or bottom quark are calculated in the framework of light cone QCD sum rules method. A comparison of our results with the predictions of the quark models is presented.
The transition form factors of the radiative decays of the heavy tensor mesons to heavy pseudoscalar and heavy vector mesons are calculated in the framework of the light cone QCD sum rules method at the point $Q^2=0$. Using the obtained values of the