ترغب بنشر مسار تعليمي؟ اضغط هنا

Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors

82   0   0.0 ( 0 )
 نشر من قبل Adam Micolich
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the development of nanowire field-effect transistors featuring an ultra-thin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally-coated nanowires, which we used to produce functional $Omega$-gate and gate-all-around structures. These give sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding $10^3$ at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically-treated nanowire surfaces; a feature generally not possible with oxides produced by atomic layer deposition due to the surface `self-cleaning effect. Our results highlight the potential for parylene as an alternative ultra-thin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylenes well-established biocompatible properties.



قيم البحث

اقرأ أيضاً

We introduce a fabrication method for gate-all-around nanowire field-effect transistors. Single nanowires were aligned perpendicular to underlying bottom gates using a resist-trench alignment technique. Top gates were then defined aligned to the bott om gates to form gate-all-around structures. This approach overcomes significant limitations in minimal obtainable gate length and gate-length control in previous horizontal wrap-gated nanowire transistors that arise because the gate is defined by wet etching. In the method presented here gate-length control is limited by the resolution of the electron-beam-lithography process. We demonstrate the versatility of our approach by fabricating a device with an independent bottom gate, top gate, and gate-all-around structure as well as a device with three independent gate-all-around structures with 300 nm, 200 nm, and 150 nm gate length. Our method enables us to achieve sub-threshold swings as low as 38 mV/dec at 77 K for a 150 nm gate length.
In this work we test graphene electrodes in nano-metric channel n-type Organic Field EffectTransistors (OFETs) based on thermally evaporated thin films of perylene-3,4,9,10-tetracarboxylic acid diimide derivative (PDIF-CN2). By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied biases, in contrast with the supra-linear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrodes devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ~140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current (SCLC) in short channel OFETs.
We report a new approach to integrating high-k{appa} dielectrics in both bottom- and top-gated MoS2 field-effect transistors (FETs) through thermal oxidation and mechanical assembly of layered twodimensional (2D) TaS2. Combined X-ray photoelectron sp ectroscopy (XPS), optical microscopy, atomic force microscopy (AFM), and capacitance-voltage (C-V) measurements confirm that multilayer TaS2 flakes can be uniformly transformed to Ta2O5 with a high dielectric constant of ~ 15.5 via thermal oxidation, while preserving the geometry and ultra-smooth surfaces of 2D TMDs. Top-gated MoS2 FETs fabricated using the thermally oxidized Ta2O5 as gate dielectric demonstrate a high current on/off ratio approaching 106, a subthreshold swing (SS) down to 61 mV/dec, and a field-effect mobility exceeding 60 cm2V-1 s-1 at room temperature, indicating high dielectric quality and low interface trap density.
Non-volatile memory devices have been limited to flash architectures that are complex devices. Here, we present a unique photomemory effect in MoS$_2$ transistors. The photomemory is based on a photodoping effect - a controlled way of manipulating th e density of free charges in monolayer MoS$_2$ using a combination of laser exposure and gate voltage application. The photodoping promotes changes on the conductance of MoS$_2$ leading to photomemory states with high memory on/off ratio. Such memory states are non-volatile with an expectation of retaining up to 50 % of the information for tens of years. Furthermore, we show that the photodoping is gate-tunable, enabling control of the recorded memory states. Finally, we propose a model to explain the photodoping, and we provide experimental evidence supporting such a phenomenon. In summary, our work includes the MoS$_2$ phototransistors in the non-volatile memory devices and expands the possibilities of memory application beyond conventional memory architectures.
We demonstrate controllable shift of the threshold voltage and the turn-on voltage in pentacene thin film transistors and rubrene single crystal field effect transistors (FET) by the use of nine organosilanes with different functional groups. Prior t o depositing the organic semiconductors, the organosilanes were applied to the SiO2 gate insulator from solution and form a self assembled monolayer (SAM). The observed shift of the transfer characteristics range from -2 to 50 V and can be related to the surface potential of the layer next to the transistor channel. Concomitantly the mobile charge carrier concentration at zero gate bias reaches up to 4*10^12/cm^2. In the single crystal FETs the measured transfer characteristics are also shifted, while essentially maintaining the high quality of the subthreshold swing. The shift of the transfer characteristics is governed by the built-in electric field of the SAM and can be explained using a simple energy level diagram. In the thin film devices, the subthreshold region is broadened, indicating that the SAM creates additional trap states, whose density is estimated to be of order 1*10^12/cm^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا