ترغب بنشر مسار تعليمي؟ اضغط هنا

Models of Rosetta/OSIRIS 67P dust coma phase function

101   0   0.0 ( 0 )
 نشر من قبل Fernando Moreno
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase function of the dust coma of comet 67P has been determined from Rosetta/OSIRIS images citep{Bertini17}. This function show a deep minimum at phase angles near 100$^circ$, and a strong backscattering enhancement. These two properties cannot be reproduced by regular models of cometary dust, most of them based on wavelength-sized and randomly-oriented aggregate particles. We show, however, that an ensamble of oriented elongated particles of a wide variety of aspect ratios, with radii $r gtrsim$10 $mu$m, and whose long axes are perpendicular to the direction of the solar radiation, are capable of reproducing the observed phase function. These particles must be absorbing, with an imaginary part of the refractive index of about 0.1 to match the expected geometric albedo, and with porosity in the 60-70% range.

قيم البحث

اقرأ أيضاً

Dust jets, i.e. fuzzy collimated streams of cometary material arising from the nucleus, have been observed in-situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986. Yet their formation mechanism remains unknown. Several solution s have been proposed, from localized physical mechanisms on the surface/sub-surface (see review in Belton (2010)) to purely dynamical processes involving the focusing of gas flows by the local topography (Crifo et al. 2002). While the latter seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller features (a few meters wide) that connect directly to the nucleus surface. We monitored these jets at high resolution and over several months to understand what are the physical processes driving their formation, and how this affects the surface. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets, and linked them precisely to their sources on the nucleus. Results.We show here observational evidence that the Northern hemisphere jets of comet 67P arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features, and therefore the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.
Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the n arrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comets dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5 microm and 50 microm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 x $10^{13}$ and 8.5 x $10^{10}$ for a = 5 microm and 50 microm respectively, or an initial mass of $H_2O$ ice around 22kg.
We investigated Wosret, a region located on the small lobe of the 67P/Churyumov-Gerasimenko comet subject to strong heating during the perihelion passage. This region includes Abydos, the final landing site of the Philae lander. We analyzed high-reso lution images of the Wosret region acquired between 2015 and 2016 by the OSIRIS instrument on board the Rosetta spacecraft. We observed a few morphological changes in Wosret, related to local dust coating removal with an estimated depth of $sim$ 1 m, along with the formation of a cavity measuring 30 m in length and 6.5 m in depth, for a total estimated mass loss of 1.2 $times$ 10$^6$ kg. The spectrophotometry of the region is typical of medium-red regions of comet 67P, with spectral slope values of 15-16 %/(100 nm) in pre-perihelion data acquired at phase angle 60$^o$. Wosret has a spectral phase reddening of 0.0546 $times 10^{-4}$ nm$^{-1} deg^{-1}$, which is about a factor of 2 lower than what was determined for the nucleus northern hemisphere regions, possibly indicating a reduced surface micro-roughness due to the lack of widespread dust coating. A few tiny bright spots are observed. Morphological features such as goosebumps or clods are widely present and larger in size than similar features located in the big lobe. Compared to Anhur and Khonsu, two southern hemisphere regions in the big lobe which are also exposed to high insolation during perihelion, Wosret exhibits fewer exposed volatiles and less morphological variations due to activity events. Our analysis indicates that the small lobe has different physical and mechanical properties than the big one and a lower volatile content, at least in its uppermost layers. These results support the hypothesis that comet 67P originated from the merging of two distinct bodies in the early Solar System.
We present 2-5 $mu$m spectroscopic observations of the dust coma of 67P/Churyumov-Gerasimenko obtained with the VIRTIS-H instrument onboard Rosetta during two outbursts that occurred on 2015, 13 September 13.6 h UT and 14 September 18.8 h UT at 1.3 A U from the Sun. Scattering and thermal properties measured before the outburst are in the mean of values measured for moderately active comets. The colour temperature excess (or superheat factor) can be attributed to submicrometre-sized particles composed of absorbing material or to porous fractal-like aggregates such as those collected by the Rosetta in situ dust instruments. The power law index of the dust size distribution is in the range 2-3. The sudden increase of infrared emission associated to the outbursts is correlated with a large increase of the colour temperature (from 300 K to up to 630 K) and a change of the dust colour at 2-2.5 $mu$m from red to blue colours, revealing the presence of very small grains ($leq$ 100 nm) in the outburst material. In addition, the measured large bolometric albedos ($sim$ 0.7) indicate bright grains in the ejecta, which could either be silicatic grains, implying the thermal degradation of the carbonaceous material, or icy grains. The 3-$mu$m absorption band from water ice is not detected in the spectra acquired during the outbursts, whereas signatures of organic compounds near 3.4 $mu$m are observed in emission. The H$_2$O 2.7-$mu$m and CO$_2$ 4.3-$mu$m vibrational bands do not show any enhancement during the outbursts.
In April 2016, the Rosetta spacecraft performed a low-altitude low-phase-angle flyby over the Imhotep-Khepry transition of 67P/Churyumov-Gerasimenkos nucleus. The OSIRIS/Narrow-Angle-Camera (NAC) acquired 112 images with mainly 3 broadband filters in the visible at a resolution of up to 0.53 m/px and for phase angles between 0.095{deg} and 62{deg}. Using those images, we have investigated the morphological and spectrophotometrical properties of this area. We assembled the images into coregistered color cubes. Using a 3D shape model, we produced the illumination conditions and georeference for each image. We projected the observations on a map to investigate its geomorphology. Observations were photometrically corrected using the Lommel-Seeliger disk law. Spectrophotometric analyses were performed on the coregistered color cubes. These data were used to estimate the local phase reddening. This region of the nucleus hosts numerous and varied types of terrains and features. We observe an association between a features nature, its reflectance, and its spectral slope. Fine material deposits exhibit an average reflectance and spectral slope, while terrains with diamictons, consolidated material, degraded outcrops, or features such as somber boulders, present a lower-than-average reflectance and higher-than-average spectral slope. Bright surfaces present here a spectral behavior consistent with terrains enriched in water-ice. We find a phase-reddening slope of 0.064{pm}0.001{%}/100nm/{deg} at 2.7 au outbound, similarly to the one obtained at 2.3 au inbound during the February 2015 flyby. Identified as the source region of multiple jets and a host of water-ice material, the Imhotep-Khepry transition appeared in April 2016, close to the frost line, to further harbor several potential locations with exposed water-ice material among its numerous different morphological terrain units.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا