ترغب بنشر مسار تعليمي؟ اضغط هنا

Comet 67P outbursts and quiescent coma at 1.3 AU from the Sun: dust properties from Rosetta/VIRTIS-H observations

101   0   0.0 ( 0 )
 نشر من قبل Jacques Crovisier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 2-5 $mu$m spectroscopic observations of the dust coma of 67P/Churyumov-Gerasimenko obtained with the VIRTIS-H instrument onboard Rosetta during two outbursts that occurred on 2015, 13 September 13.6 h UT and 14 September 18.8 h UT at 1.3 AU from the Sun. Scattering and thermal properties measured before the outburst are in the mean of values measured for moderately active comets. The colour temperature excess (or superheat factor) can be attributed to submicrometre-sized particles composed of absorbing material or to porous fractal-like aggregates such as those collected by the Rosetta in situ dust instruments. The power law index of the dust size distribution is in the range 2-3. The sudden increase of infrared emission associated to the outbursts is correlated with a large increase of the colour temperature (from 300 K to up to 630 K) and a change of the dust colour at 2-2.5 $mu$m from red to blue colours, revealing the presence of very small grains ($leq$ 100 nm) in the outburst material. In addition, the measured large bolometric albedos ($sim$ 0.7) indicate bright grains in the ejecta, which could either be silicatic grains, implying the thermal degradation of the carbonaceous material, or icy grains. The 3-$mu$m absorption band from water ice is not detected in the spectra acquired during the outbursts, whereas signatures of organic compounds near 3.4 $mu$m are observed in emission. The H$_2$O 2.7-$mu$m and CO$_2$ 4.3-$mu$m vibrational bands do not show any enhancement during the outbursts.



قيم البحث

اقرأ أيضاً

Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from July to September 2015, i.e., around perihelion (13 August 2015), with the high-resolution channel of the VIRTIS instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H$_2$O, CO$_2$, $^{13}$CO$_2$, OCS, and CH$_4$ detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated southern hemisphere, as revealed by H$_2$O and CO$_2$ raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed six days after perihelion. In the mean time, CO$_2$, CH$_4$, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32%, 0.47%, and 0.18%, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO$_2$ should be representative of the 67P nucleus original composition, and indicates that 67P is a CO$_2$-rich comet. Comparison with abundance ratios measured in the northern hemisphere shows that seasons play an important role in comet outgassing. The low CO$_2$/H$_2$O values measured above the illuminated northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.
We analyze 2-5 micrometre spectroscopic observations of the dust coma of comet 67P/Churyumov-Gerasimenko obtained with the VIRTIS-H instrument onboard Rosetta from 3 June to 29 October 2015 at heliocentric distances r_h = 1.24-1.55 AU. The 2-2.5 micr ometre color, bolometric albedo, and color temperature are measured using spectral fitting. Data obtained at alpha = 90{deg} solar phase angle show an increase of the bolometric albedo (0.05 to 0.14) with increasing altitude (0.5 to 8 km), accompanied by a possible marginal decrease of the color and color temperature. Possible explanations include the presence in the inner coma of dark particles on ballistic trajectories, and radial changes in particle composition. In the phase angle range 50-120{deg}, phase reddening is significant (0.031 %/100 nm/{deg}), for a mean color of 2 %/100 nm at alpha = 90{deg}, that can be related to the roughness of the dust particles. Moreover, a decrease of the color temperature with decreasing phase angle is also observed at a rate of ~ 0.3 K/{deg}, consistent with the presence of large porous particles, with low thermal inertia, and showing a significant day-to-night temperature contrast. Comparing data acquired at fixed phase angle (alpha = 90{deg}), a 20% increase of the bolometric albedo is observed near perihelion. Heliocentric variations of the dust color are not significant in the analyzed time period. Measured color temperatures are varying from 260 to 320 K, and follow a r^0.6 variation in the r_h = 1.24-1.5 AU range, close to the expected r_h^0.5 value.
The ESA Rosetta spacecraft, currently orbiting around comet 67P, has already provided in situ measurements of the dust grain properties from several instruments, particularly OSIRIS and GIADA. We propose adding value to those measurements by combinin g them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014. A Monte Carlo dust tail code has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately. The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is $alpha$=--3, instead of $alpha$=--2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 au, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 au. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment.
The phase function of the dust coma of comet 67P has been determined from Rosetta/OSIRIS images citep{Bertini17}. This function show a deep minimum at phase angles near 100$^circ$, and a strong backscattering enhancement. These two properties cannot be reproduced by regular models of cometary dust, most of them based on wavelength-sized and randomly-oriented aggregate particles. We show, however, that an ensamble of oriented elongated particles of a wide variety of aspect ratios, with radii $r gtrsim$10 $mu$m, and whose long axes are perpendicular to the direction of the solar radiation, are capable of reproducing the observed phase function. These particles must be absorbing, with an imaginary part of the refractive index of about 0.1 to match the expected geometric albedo, and with porosity in the 60-70% range.
159 - E. Behar , H. Nilsson , P. Henri 2018
The first 1000 km of the ion tail of comet 67P/Churyumov-Gerasimenko were explored by the European Rosetta spacecraft, 2.7 au away from the Sun. We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comet s atmosphere. We analysed in situ ion and magnetic field measurements and compared the data to a semi-analytical model. The cometary ions are observed flowing close to radially away from the nucleus during the entire excursion. The solar wind is deflected by its interaction with the new-born cometary ions. Two concentric regions appear, an inner region dominated by the expanding cometary ions and an outer region dominated by the solar wind particles. The single night-side excursion operated by Rosetta revealed that the near radial flow of the cometary ions can be explained by the combined action of three different electric field components, resulting from the ion motion, the electron pressure gradients, and the magnetic field draping. The observed solar wind deflection is governed mostly by the motional electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا