ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating transition-metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications

54   0   0.0 ( 0 )
 نشر من قبل Gopalakrishnan Sai Gautam
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the strongly constrained and appropriately normed (SCAN) and SCAN+U approximations for describing electron exchange-correlation (XC) within density functional theory, we investigate the oxidation energetics, lattice constants, and electronic structure of binary Ce-, Mn-, and Fe-oxides, which are crucial ingredients for generating renewable fuels using two-step, oxide-based, solar thermochemical reactors. Unlike other common XC functionals, we find that SCAN does not over-bind the O2 molecule, based on direct calculations of its bond energy and robust agreement between calculated formation enthalpies of main group oxides versus experiments. However, in the case of transition-metal oxides (TMOs), SCAN systematically overestimates (i.e., yields too negative) oxidation enthalpies due to remaining self-interaction errors in the description of their ground-state electronic structure. Adding a Hubbard U term to the transition-metal centers, where the magnitude of U is determined from experimental oxidation enthalpies, significantly improves the qualitative agreement and marginally improves the quantitative agreement of SCAN+U-calculated electronic structure and lattice parameters, respectively, with experiments. Importantly, SCAN predicts the wrong ground-state structure for a few oxides, namely, Ce2O3, Mn2O3, and Fe3O4, while SCAN+U predicts the right polymorph for all systems considered in this work. Hence, the SCAN+U framework, with an appropriately determined U, will be required to accurately describe ground-state properties and yield qualitatively consistent electronic properties for most transition- metal and rare earth oxides.



قيم البحث

اقرأ أيضاً

The DFT-1/2 method in density functional theory [L. G. Ferreira et al., Phys. Rev. B 78, 125116 (2008)] aims to provide accurate band gaps at the computational cost of semilocal calculations. The method has shown promise in a large number of cases, h owever some of its limitations or ambiguities on how to apply it to covalent semiconductors have been pointed out recently [K.-H. Xue et al., Comput. Mater. Science 153, 493 (2018)]. In this work, we investigate in detail some of the problems of the DFT-1/2 method with a focus on two classes of materials: covalently bonded semiconductors and transition-metal oxides. We argue for caution in the application of DFT-1/2 to these materials, and the condition to get an improved band gap is a spatial separation of the orbitals at the valence band maximum and conduction band minimum.
Doped transition-metal dichalcogenides monolayers exhibit exciting magnetic properties for the benefit of two-dimensional spintronic devices. Using density functional theory (DFT) incorporating Hubbard-type of correction (DFT$+U$) to account for the electronic correlation, we study the magnetocrystalline anisotropy energy (MAE) characterizing Mn-doped MS$_2$ (M=Mo, W) monolayers. A single isolated Mn dopant exhibits a large perpendicular magnetic anisotropy of 35 meV (8 meV) in the case of Mn-doped WS$_2$ (MoS$_2$) monolayer. This value originates from the Mn in-plane orbitals degeneracy lifting due to the spin-orbit coupling. In pairwise doping, the magnetization easy axis changes to the in-plane direction with a weak MAE compared to single Mn doping. Our results suggest that diluted Mn-doped MS$_2$ monolayers, where the Mn dopants are well separated, could potentially be a candidate for the realization of ultimate nanomagnet units.
The Strongly Constrained and Appropriately Normed (SCAN) functional is a non-empirical meta-generalized-gradient approximation (meta-GGA) functional that satisfies all the known constraints that a meta-GGA functional can, but it also exhibits a great degree of sensitivity to numerical grids. Its numerical complexities are amplified when used in Perdew-Zunger (PZ) self-interaction correction (SIC) which requires evaluating energies and potentials using orbital densities that vary far more rapidly than spin densities. Recent regularization of the SCAN functional (rSCAN) simplifies numerical complexities of SCAN at the expense of violation of some exact constraints. To develop a good understanding of the performance of rSCAN and the effect of loss of an exact constraint at the limit of slowly varying density, we have compared its performance against SCAN for vibrational frequencies, infra-red and Raman intensities of water clusters, electric dipole moments, spin magnetic moments of a few molecular magnets, weak interaction energies of dimers, barrier heights of reactions, and atomization energies for benchmark sets of molecules. Likewise, we examined the performance of SIC-rSCAN using the PZ-SIC method by studying atomic total energies, ionization potentials and electron affinities, molecular atomization energies, barrier heights, and dissociation and reaction energies. We find that rSCAN requires a much less dense numerical grid and gives very similar results as SCAN for all properties examined with the exception of atomization energies which are somewhat worse in rSCAN. On the other hand, SIC-rSCAN gives marginally better performance than SIC-SCAN for almost all properties studied in this work.
The discovery of intrinsic magnetic topological order in $rm MnBi_2Te_4$ has invigorated the search for materials with coexisting magnetic and topological phases. These multi-order quantum materials are expected to exhibit new topological phases that can be tuned with magnetic fields, but the search for such materials is stymied by difficulties in predicting magnetic structure and stability. Here, we compute over 27,000 unique magnetic orderings for over 3,000 transition metal oxides in the Materials Project database to determine their magnetic ground states and estimate their effective exchange parameters and critical temperatures. We perform a high-throughput band topology analysis of centrosymmetric magnetic materials, calculate topological invariants, and identify 18 new candidate ferromagnetic topological semimetals, axion insulators, and antiferromagnetic topological insulators. To accelerate future efforts, machine learning classifiers are trained to predict both magnetic ground states and magnetic topological order without requiring first-principles calculations.
The electronic structure in alkaline earth AeO (Ae = Be, Mg, Ca, Sr, Ba) and post-transition metal oxides MeO (Me = Zn, Cd, Hg) is probed with oxygen K-edge X-ray absorption and emission spectroscopy. The experimental data is compared with density fu nctional theory electronic structure calculations. We use our experimental spectra of the oxygen K-edge to estimate the bandgaps of these materials, and compare our results to the range of values available in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا