ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor Train decomposition on TensorFlow (T3F)

64   0   0.0 ( 0 )
 نشر من قبل Alexander Novikov
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor Train decomposition is used across many branches of machine learning. We present T3F -- a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU execution, batch processing, automatic differentiation, and versatile functionality for the Riemannian optimization framework, which takes into account the underlying manifold structure to construct efficient optimization methods. The library makes it easier to implement machine learning papers that rely on the Tensor Train decomposition. T3F includes documentation, examples and 94% test coverage.



قيم البحث

اقرأ أيضاً

The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the cores) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to $100$, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.
In this paper, we develop software for decomposing sparse tensors that is portable to and performant on a variety of multicore, manycore, and GPU computing architectures. The result is a single code whose performance matches optimized architecture-sp ecific implementations. The key to a portable approach is to determine multiple levels of parallelism that can be mapped in different ways to different architectures, and we explain how to do this for the matricized tensor times Khatri-Rao product (MTTKRP) which is the key kernel in canonical polyadic tensor decomposition. Our implementation leverages the Kokkos framework, which enables a single code to achieve high performance across multiple architectures that differ in how they approach fine-grained parallelism. We also introduce a new construct for portable thread-local arrays, which we call compile-time polymorphic arrays. Not only are the specifics of our approaches and implementation interesting for tuning tensor computations, but they also provide a roadmap for developing other portable high-performance codes. As a last step in optimizing performance, we modify the MTTKRP algorithm itself to do a permuted traversal of tensor nonzeros to reduce atomic-write contention. We test the performance of our implementation on 16- and 68-core Intel CPUs and the K80 and P100 NVIDIA GPUs, showing that we are competitive with state-of-the-art architecture-specific codes while having the advantage of being able to run on a variety of architectures.
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor k we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors representation. In particular we present and analyze a randomized algorithm for the calculation of the hierarchical SVD (HSVD) for the tensor train (TT) format.
61 - Oleg Smirnov 2021
The adoption of neural networks and deep learning in non-Euclidean domains has been hindered until recently by the lack of scalable and efficient learning frameworks. Existing toolboxes in this space were mainly motivated by research and education us e cases, whereas practical aspects, such as deploying and maintaining machine learning models, were often overlooked. We attempt to bridge this gap by proposing TensorFlow RiemOpt, a Python library for optimization on Riemannian manifolds in TensorFlow. The library is designed with the aim for a seamless integration with the TensorFlow ecosystem, targeting not only research, but also streamlining production machine learning pipelines.
There is a significant expansion in both volume and range of applications along with the concomitant increase in the variety of data sources. These ever-expanding trends have highlighted the necessity for more versatile analysis tools that offer grea ter opportunities for algorithmic developments and computationally faster operations than the standard flat-view matrix approach. Tensors, or multi-way arrays, provide such an algebraic framework which is naturally suited to data of such large volume, diversity, and veracity. Indeed, the associated tensor decompositions have demonstrated their potential in breaking the Curse of Dimensionality associated with traditional matrix methods, where a necessary exponential increase in data volume leads to adverse or even intractable consequences on computational complexity. A key tool underpinning multi-linear manipulation of tensors and tensor networks is the standard Tensor Contraction Product (TCP). However, depending on the dimensionality of the underlying tensors, the TCP also comes at the price of high computational complexity in tensor manipulation. In this work, we resort to diagrammatic tensor network manipulation to calculate such products in an efficient and computationally tractable manner, by making use of Tensor Train decomposition (TTD). This has rendered the underlying concepts easy to perceive, thereby enhancing intuition of the associated underlying operations, while preserving mathematical rigour. In addition to bypassing the cumbersome mathematical multi-linear expressions, the proposed Tensor Train Contraction Product model is shown to accelerate significantly the underlying computational operations, as it is independent of tensor order and linear in the tensor dimension, as opposed to performing the full computations through the standard approach (exponential in tensor order).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا