ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini Planet Imager Spectroscopy of the HR 8799 planets c and d

217   0   0.0 ( 0 )
 نشر من قبل Patrick Ingraham
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets spectral energy distributions. When combined with the 3 to 4 um photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.



قيم البحث

اقرأ أيضاً

The four directly imaged planets orbiting the star HR 8799 are an ideal laboratory to probe atmospheric physics and formation models. We present more than a decades worth of Keck/OSIRIS observations of these planets, which represent the most detailed look at their atmospheres to-date by its resolution and signal to noise ratio. We present the first direct detection of HR 8799 d, the second-closest known planet to the star, at moderate spectral resolution with Keck/OSIRIS (K-band; R~4,000). Additionally, we uniformly analyze new and archival OSIRIS data (H and K band) of HR 8799 b, c, and d. First, we show detections of water (H2O) and carbon monoxide (CO) in the three planets and discuss the ambiguous case of methane (CH4) in the atmosphere of HR 8799b. Then, we report radial velocity (RV) measurements for each of the three planets. The RV measurement of HR 8799 d is consistent with predictions made assuming coplanarity and orbital stability of the HR 8799 planetary system. Finally, we perform a uniform atmospheric analysis on the OSIRIS data, published photometric points, and low resolution spectra. We do not infer any significant deviation from to the stellar value of the carbon to oxygen ratio (C/O) of the three planets, which therefore does not yet yield definitive information about the location or method of formation. However, constraining the C/O ratio for all the HR 8799 planets is a milestone for any multiplanet system, and particularly important for large, widely separated gas giants with uncertain formation processes.
122 - Ji Wang , Bo Ma 2020
Comparing chemical abundances of a planet and the host star reveals the origin and formation path. Stellar abundance is measured with high-resolution spectroscopy. Planet abundance, on the other hand, is usually inferred from low-resolution data. For directly imaged exoplanets, the data are available from a slew of high-contrast imaging/spectroscopy instruments. Here, we study the chemical abundance of HR 8799 and its planet c. We measure stellar abundance using LBT/PEPSI (R=120,000) and archival HARPS data: stellar [C/H], [O/H], and C/O are 0.11$pm$0.12, 0.12$pm$0.14, and 0.54$^{+0.12}_{-0.09}$, all consistent with solar values. We conduct atmospheric retrieval using newly obtained Subaru/CHARIS data together with archival Gemini/GPI and Keck/OSIRIS data. We model the planet spectrum with petitRADTRANS and conduct retrieval using PyMultiNest. Retrieved planetary abundance can vary by $sim$0.5 dex, from sub-stellar to stellar C and O abundances. The variation depends on whether strong priors are chosen to ensure a reasonable planet mass. Moreover, comparison with previous works also reveals inconsistency in abundance measurements. We discuss potential issues that can cause the inconsistency, e.g., systematics in individual data sets and different assumptions in the physics and chemistry in retrieval. We conclude that no robust retrieval can be obtained unless the issues are fully resolved.
HR4796A hosts a well-studied debris disk with a long history due to its high fractional luminosity and favorable inclination lending itself well to both unresolved and resolved observations. We present new J- and K1-band images of the resolved debris disk HR4796A taken in the polarimetric mode of the Gemini Planet Imager (GPI). The polarized intensity features a strongly forward scattered brightness distribution and is undetected at the far side of the disk. The total intensity is detected at all scattering angles and also exhibits a strong forward scattering peak. We use a forward modelled geometric disk in order to extract geometric parameters, polarized fraction and total intensity scattering phase functions for these data as well as H-band data previously taken by GPI. We find the polarized phase function becomes increasingly more forward scattering as wavelength increases. We fit Mie and distribution of hollow spheres grain (DHS) models to the extracted functions. We find that while it is possible to describe generate a satisfactory model for the total intensity using a DHS model, but not with a Mie model. We find that no single grain population of DHS or Mie grains of arbitrary composition can simultaneously reproduce the polarized fraction and total intensity scattering phase functions, indicating the need for more sophisticated grain models.
Using the Keck Planet Imager and Characterizer (KPIC), we obtained high-resolution (R$sim$35,000) $K$-band spectra of the four planets orbiting HR 8799. We clearly detected water{} and CO in the atmospheres of HR 8799 c, d, and e, and tentatively det ected a combination of CO and water{} in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured $vsin(i)$ values of $10.1^{+2.8}_{-2.7}$~km/s for HR 8799 d and $15.0^{+2.3}_{-2.6}$~km/s for HR 8799 e, and placed an upper limit of $< 14$~km/s of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anti-correlated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lower mass planets.
High-contrast medium resolution spectroscopy has been used to detect molecules such as water and carbon monoxide in the atmospheres of gas giant exoplanets. In this work, we show how it can be used to derive radial velocity (RV) measurements of direc tly imaged exoplanets. Improving upon the traditional cross-correlation technique, we develop a new likelihood based on joint forward modelling of the planetary signal and the starlight background (i.e., speckles). After marginalizing over the starlight model, we infer the barycentric RV of HR 8799 b and c in 2010 yielding -9.2 +- 0.5 km/s and -11.6 +- 0.5 km/s respectively. These RV measurements help to constrain the 3D orientation of the orbit of the planet by resolving the degeneracy in the longitude of ascending node. Assuming coplanar orbits for HR 8799 b and c, but not including d and e, we estimate Omega = 89 (+27,-17) deg and i = 20.8 (4.5,-3.7) deg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا